Salapaka, Murti V.
Causal Structure Recovery of Linear Dynamical Systems: An FFT based Approach
Veedu, Mishfad Shaikh, Melbourne, James, Salapaka, Murti V.
Learning causal effects from data is a fundamental and well-studied problem across science, especially when the cause-effect relationship is static in nature. However, causal effect is less explored when there are dynamical dependencies, i.e., when dependencies exist between entities across time. Identifying dynamic causal effects from time-series observations is computationally expensive when compared to the static scenario. We demonstrate that the computational complexity of recovering the causation structure for the vector auto-regressive (VAR) model is $O(Tn^3N^2)$, where $n$ is the number of nodes, $T$ is the number of samples, and $N$ is the largest time-lag in the dependency between entities. We report a method, with a reduced complexity of $O(Tn^3 \log N)$, to recover the causation structure to obtain frequency-domain (FD) representations of time-series. Since FFT accumulates all the time dependencies on every frequency, causal inference can be performed efficiently by considering the state variables as random variables at any given frequency. We additionally show that, for systems with interactions that are LTI, do-calculus machinery can be realized in the FD resulting in versions of the classical single-door (with cycles), front and backdoor criteria. We demonstrate, for a large class of problems, graph reconstruction using multivariate Wiener projections results in a significant computational advantage with $O(n)$ complexity over reconstruction algorithms such as the PC algorithm which has $O(n^q)$ complexity, where $q$ is the maximum neighborhood size. This advantage accrues due to some remarkable properties of the phase response of the frequency-dependent Wiener coefficients which is not present in any time-domain approach.
Information Theoretically Optimal Sample Complexity of Learning Dynamical Directed Acyclic Graphs
Veedu, Mishfad Shaikh, Deka, Deepjyoti, Salapaka, Murti V.
In this article, the optimal sample complexity of learning the underlying interaction/dependencies of a Linear Dynamical System (LDS) over a Directed Acyclic Graph (DAG) is studied. The sample complexity of learning a DAG's structure is well-studied for static systems, where the samples of nodal states are independent and identically distributed (i.i.d.). However, such a study is less explored for DAGs with dynamical systems, where the nodal states are temporally correlated. We call such a DAG underlying an LDS as \emph{dynamical} DAG (DDAG). In particular, we consider a DDAG where the nodal dynamics are driven by unobserved exogenous noise sources that are wide-sense stationary (WSS) in time but are mutually uncorrelated, and have the same {power spectral density (PSD)}. Inspired by the static settings, a metric and an algorithm based on the PSD matrix of the observed time series are proposed to reconstruct the DDAG. The equal noise PSD assumption can be relaxed such that identifiability conditions for DDAG reconstruction are not violated. For the LDS with WSS (sub) Gaussian exogenous noise sources, it is shown that the optimal sample complexity (or length of state trajectory) needed to learn the DDAG is $n=\Theta(q\log(p/q))$, where $p$ is the number of nodes and $q$ is the maximum number of parents per node. To prove the sample complexity upper bound, a concentration bound for the PSD estimation is derived, under two different sampling strategies. A matching min-max lower bound using generalized Fano's inequality also is provided, thus showing the order optimality of the proposed algorithm.
Distributed Average Consensus Over Noisy Communication Links in Directed Graphs
Khatana, Vivek, Salapaka, Murti V.
Motivated by the needs of resiliency, scalability, and plug-and-play operation, distributed decision-making is becoming increasingly prevalent. The problem of achieving consensus in a multi-agent system is at the core of distributed decision-making. In this article, we study the problem of achieving average consensus over a directed multi-agent network when the communication links are corrupted with noise. We propose an algorithm where each agent updates its estimates based on the local mixing of information and adds its weighted noise-free initial information to its updates during every iteration. We demonstrate that with appropriately designed weights the agents achieve consensus under additive communication noise. We establish that when the communication links are noiseless the proposed algorithm moves towards consensus at a geometric rate. Under communication noise, we prove that the agent estimates reach a consensus value almost surely. We present numerical experiments to corroborate the efficacy of the proposed algorithm under different noise realizations and various algorithm parameters.
Physics Informed Topology Learning in Networks of Linear Dynamical Systems
Talukdar, Saurav, Deka, Deepjyoti, Doddi, Harish, Materassi, Donatello, Chertkov, Misha, Salapaka, Murti V.
Learning influence pathways of a network of dynamically related processes from observations is of considerable importance in many disciplines. In this article, influence networks of agents which interact dynamically via linear dependencies are considered. An algorithm for the reconstruction of the topology of interaction based on multivariate Wiener filtering is analyzed. It is shown that for a vast and important class of interactions, that respect flow conservation, the topology of the interactions can be exactly recovered. The class of problems where reconstruction is guaranteed to be exact includes power distribution networks, dynamic thermal networks and consensus networks. The efficacy of the approach is illustrated through simulation and experiments on consensus networks, IEEE power distribution networks and thermal dynamics of buildings.