Sajjanhar, Atul
A Unified Solution to Diverse Heterogeneities in One-shot Federated Learning
Bai, Jun, Song, Yiliao, Wu, Di, Sajjanhar, Atul, Xiang, Yong, Zhou, Wei, Tao, Xiaohui, Li, Yan
One-shot federated learning (FL) limits the communication between the server and clients to a single round, which largely decreases the privacy leakage risks in traditional FLs requiring multiple communications. However, we find existing one-shot FL frameworks are vulnerable to distributional heterogeneity due to their insufficient focus on data heterogeneity while concentrating predominantly on model heterogeneity. Filling this gap, we propose a unified, data-free, one-shot federated learning framework (FedHydra) that can effectively address both model and data heterogeneity. Rather than applying existing value-only learning mechanisms, a structure-value learning mechanism is proposed in FedHydra. Specifically, a new stratified learning structure is proposed to cover data heterogeneity, and the value of each item during computation reflects model heterogeneity. By this design, the data and model heterogeneity issues are simultaneously monitored from different aspects during learning. Consequently, FedHydra can effectively mitigate both issues by minimizing their inherent conflicts. We compared FedHydra with three SOTA baselines on four benchmark datasets. Experimental results show that our method outperforms the previous one-shot FL methods in both homogeneous and heterogeneous settings.
FedAT: Federated Adversarial Training for Distributed Insider Threat Detection
Gayathri, R G, Sajjanhar, Atul, Uddin, Md Palash, Xiang, Yong
Insider threats usually occur from within the workplace, where the attacker is an entity closely associated with the organization. The sequence of actions the entities take on the resources to which they have access rights allows us to identify the insiders. Insider Threat Detection (ITD) using Machine Learning (ML)-based approaches gained attention in the last few years. However, most techniques employed centralized ML methods to perform such an ITD. Organizations operating from multiple locations cannot contribute to the centralized models as the data is generated from various locations. In particular, the user behavior data, which is the primary source of ITD, cannot be shared among the locations due to privacy concerns. Additionally, the data distributed across various locations result in extreme class imbalance due to the rarity of attacks. Federated Learning (FL), a distributed data modeling paradigm, gained much interest recently. However, FL-enabled ITD is not yet explored, and it still needs research to study the significant issues of its implementation in practical settings. As such, our work investigates an FL-enabled multiclass ITD paradigm that considers non-Independent and Identically Distributed (non-IID) data distribution to detect insider threats from different locations (clients) of an organization. Specifically, we propose a Federated Adversarial Training (FedAT) approach using a generative model to alleviate the extreme data skewness arising from the non-IID data distribution among the clients. Besides, we propose to utilize a Self-normalized Neural Network-based Multi-Layer Perceptron (SNN-MLP) model to improve ITD. We perform comprehensive experiments and compare the results with the benchmarks to manifest the enhanced performance of the proposed FedATdriven ITD scheme.
Multi-class Classification Based Anomaly Detection of Insider Activities
Gayathri, R G, Sajjanhar, Atul, Xiang, Yong, Ma, Xingjun
Insider threats are the cyber attacks from within the trusted entities of an organization. Lack of real-world data and issue of data imbalance leave insider threat analysis an understudied research area. To mitigate the effect of skewed class distribution and prove the potential of multinomial classification algorithms for insider threat detection, we propose an approach that combines generative model with supervised learning to perform multi-class classification using deep learning. The generative adversarial network (GAN) based insider detection model introduces Conditional Generative Adversarial Network (CGAN) to enrich minority class samples to provide data for multi-class anomaly detection. The comprehensive experiments performed on the benchmark dataset demonstrates the effectiveness of introducing GAN derived synthetic data and the capability of multi-class anomaly detection in insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.
Our Practice Of Using Machine Learning To Recognize Species By Voice
Balemarthy, Siddhardha, Sajjanhar, Atul, Zheng, James Xi
As the technology is advancing, audio recognition in machine learning is improved as well. Research in audio recognition has traditionally focused on speech. Living creatures (especially the small ones) are part of the whole ecosystem, monitoring as well as maintaining them are important tasks. Species such as animals and birds are tending to change their activities as well as their habitats due to the adverse effects on the environment or due to other natural or man-made calamities. For those in far deserted areas, we will not have any idea about their existence until we can continuously monitor them. Continuous monitoring will take a lot of hard work and labor. If there is no continuous monitoring, then there might be instances where endangered species may encounter dangerous situations. The best way to monitor those species are through audio recognition. Classifying sound can be a difficult task even for humans. Powerful audio signals and their processing techniques make it possible to detect audio of various species. There might be many ways wherein audio recognition can be done. We can train machines either by pre-recorded audio files or by recording them live and detecting them. The audio of species can be detected by removing all the background noise and echoes. Smallest sound is considered as a syllable. Extracting various syllables is the process we are focusing on which is known as audio recognition in terms of Machine Learning (ML).