Saito, Kuniaki
Is Large-Scale Pretraining the Secret to Good Domain Generalization?
Teterwak, Piotr, Saito, Kuniaki, Tsiligkaridis, Theodoros, Plummer, Bryan A., Saenko, Kate
Multi-Source Domain Generalization (DG) is the task of training on multiple source domains and achieving high classification performance on unseen target domains. Recent methods combine robust features from web-scale pretrained backbones with new features learned from source data, and this has dramatically improved benchmark results. However, it remains unclear if DG finetuning methods are becoming better over time, or if improved benchmark performance is simply an artifact of stronger pre-training. Prior studies have shown that perceptual similarity to pre-training data correlates with zero-shot performance, but we find the effect limited in the DG setting. Instead, we posit that having perceptually similar data in pretraining is not enough; and that it is how well these data were learned that determines performance. This leads us to introduce the Alignment Hypothesis, which states that the final DG performance will be high if and only if alignment of image and class label text embeddings is high. Our experiments confirm the Alignment Hypothesis is true, and we use it as an analysis tool of existing DG methods evaluated on DomainBed datasets by splitting evaluation data into In-pretraining (IP) and Out-of-pretraining (OOP). We show that all evaluated DG methods struggle on DomainBed-OOP, while recent methods excel on DomainBed-IP. Put together, our findings highlight the need for DG methods which can generalize beyond pretraining alignment. Domain Generalization (DG) addresses the challenge of enabling AI models to generalize from known domains to unseen ones, a critical task given the inevitable distribution shifts between training and real-world deployment (Saenko et al., 2010). DG pipelines typically consist of three stages: pretraining a model on a large, general dataset; finetuning the model with one or more source domains; and finally evaluating the model on target domains that are distinct from source domains.
Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction
Saito, Kuniaki, Sohn, Kihyuk, Lee, Chen-Yu, Ushiku, Yoshitaka
Large language models require updates to remain up-to-date or adapt to new domains by fine-tuning them with new documents. One key is memorizing the latest information in a way that the memorized information is extractable with a query prompt. However, LLMs suffer from a phenomenon called "perplexity curse"; despite minimizing document perplexity during fine-tuning, LLMs struggle to extract information through a prompt sentence. In this new knowledge acquisition and extraction, we find a very intriguing fact that LLMs can accurately answer questions about the first sentence, but they struggle to extract information described in the middle or end of the documents used for fine-tuning. Our study suggests that the auto-regressive training causes this issue; each token is prompted by reliance on all previous tokens, which hinders the model from recalling information from training documents by question prompts. To conduct the in-depth study, we publish both synthetic and real datasets, enabling the evaluation of the QA performance w.r.t. the position of the corresponding answer in a document. Our investigation shows that even a large model suffers from the "perplexity curse", but regularization such as denoising auto-regressive loss can enhance the information extraction from diverse positions. These findings will be (i) a key to improving knowledge extraction from LLMs and (ii) new elements to discuss the trade-off between RAG and fine-tuning in adapting LLMs to a new domain.
ERM++: An Improved Baseline for Domain Generalization
Teterwak, Piotr, Saito, Kuniaki, Tsiligkaridis, Theodoros, Saenko, Kate, Plummer, Bryan A.
Multi-source Domain Generalization (DG) measures a classifier's ability to generalize to new distributions of data it was not trained on, given several training domains. While several multi-source DG methods have been proposed, they incur additional complexity during training by using domain labels. Recent work has shown that a well-tuned Empirical Risk Minimization (ERM) training procedure, that is simply minimizing the empirical risk on the source domains, can outperform most existing DG methods. We identify several key candidate techniques to further improve ERM performance, such as better utilization of training data, model parameter selection, and weight-space regularization. We call the resulting method ERM++, and show it significantly improves the performance of DG on five multi-source datasets by over 5% compared to standard ERM, and beats state-of-the-art despite being less computationally expensive. Additionally, we demonstrate the efficacy of ERM++ on the WILDS-FMOW dataset, a challenging DG benchmark. We hope that ERM++ becomes a strong baseline for future DG research. Code is released at https://github.com/piotr-teterwak/erm_plusplus.
DeMIAN: Deep Modality Invariant Adversarial Network
Saito, Kuniaki, Mukuta, Yusuke, Ushiku, Yoshitaka, Harada, Tatsuya
Obtaining common representations from different modalities is important in that they are interchangeable with each other in a classification problem. For example, we can train a classifier on image features in the common representations and apply it to the testing of the text features in the representations. Existing multi-modal representation learning methods mainly aim to extract rich information from paired samples and train a classifier by the corresponding labels; however, collecting paired samples and their labels simultaneously involves high labor costs. Addressing paired modal samples without their labels and single modal data with their labels independently is much easier than addressing labeled multi-modal data. To obtain the common representations under such a situation, we propose to make the distributions over different modalities similar in the learned representations, namely modality-invariant representations. In particular, we propose a novel algorithm for modality-invariant representation learning, named Deep Modality Invariant Adversarial Network (DeMIAN), which utilizes the idea of Domain Adaptation (DA). Using the modality-invariant representations learned by DeMIAN, we achieved better classification accuracy than with the state-of-the-art methods, especially for some benchmark datasets of zero-shot learning.