Plotting

 Saito, Kazumi


Accelerating spherical K-means clustering for large-scale sparse document data

arXiv.org Machine Learning

This paper presents an accelerated spherical K-means clustering algorithm for large-scale and high-dimensional sparse document data sets. We design an algorithm working in an architecture-friendly manner (AFM), which is a procedure of suppressing performance-degradation factors such as the numbers of instructions, branch mispredictions, and cache misses in CPUs of a modern computer system. For the AFM operation, we leverage unique universal characteristics (UCs) of a data-object and a cluster's mean set, which are skewed distributions on data relationships such as Zipf's law and a feature-value concentration phenomenon. The UCs indicate that the most part of the number of multiplications for similarity calculations is executed regarding terms with high document frequencies (df) and the most part of a similarity between an object- and a mean-feature vector is obtained by the multiplications regarding a few high mean-feature values. Our proposed algorithm applies an inverted-index data structure to a mean set, extracts the specific region with high-df terms and high mean-feature values in the mean-inverted index by newly introduced two structural parameters, and exploits the index divided into three parts for efficient pruning. The algorithm determines the two structural parameters by minimizing the approximate number of multiplications related to that of instructions, reduces the branch mispredictions by sharing the index structure including the two parameters with all the objects, and suppressing the cache misses by keeping in the caches the frequently used data in the foregoing specific region, resulting in working in the AFM. We experimentally demonstrate that our algorithm efficiently achieves superior speed performance in large-scale documents compared with algorithms using the state-of-the-art techniques.


Structured Inverted-File k-Means Clustering for High-Dimensional Sparse Data

arXiv.org Machine Learning

This paper presents an architecture-friendly k-means clustering algorithm called SIVF for a large-scale and high-dimensional sparse data set. Algorithm efficiency on time is often measured by the number of costly operations such as similarity calculations. In practice, however, it depends greatly on how the algorithm adapts to an architecture of the computer system which it is executed on. Our proposed SIVF employs invariant centroid-pair based filter (ICP) to decrease the number of similarity calculations between a data object and centroids of all the clusters. To maximize the ICP performance, SIVF exploits for a centroid set an inverted-file that is structured so as to reduce pipeline hazards. We demonstrate in our experiments on real large-scale document data sets that SIVF operates at higher speed and with lower memory consumption than existing algorithms. Our performance analysis reveals that SIVF achieves the higher speed by suppressing performance degradation factors of the number of cache misses and branch mispredictions rather than less similarity calculations.


Learning to Predict Opinion Share in Social Networks

AAAI Conferences

Blogosphere and sites such as for social networking, There has been a variety of work on the voter model. Dynamical knowledge-sharing and media-sharing in the World Wide properties of the basic model, including how the degree Web have enabled to form various kinds of large social distribution and the network size affect the mean time networks, through which behaviors, ideas and opinions to reach consensus, have been extensively studied (Liggett can spread. Thus, substantial attention has been directed 1999; Sood and Redner 2005) from mathematical point to investigating the spread of influence in these networks of view. Several variants of the voter model are also investigated (Leskovec, Adamic, and Huberman 2007; Crandall et al.




Parametric Mixture Models for Multi-Labeled Text

Neural Information Processing Systems

We propose probabilistic generative models, called parametric mixture models (PMMs), for multiclass, multi-labeled text categorization problem. Conventionally, the binary classification approach has been employed, in which whether or not text belongs to a category is judged by the binary classifier for every category. In contrast, our approach can simultaneously detect multiple categories of text using PMMs. We derive efficient learning and prediction algorithms for PMMs. We also empirically show that our method could significantly outperform the conventional binary methods when applied to multi-labeled text categorization using real World Wide Web pages.


Parametric Mixture Models for Multi-Labeled Text

Neural Information Processing Systems

We propose probabilistic generative models, called parametric mixture models(PMMs), for multiclass, multi-labeled text categorization problem.Conventionally, the binary classification approach has been employed, in which whether or not text belongs to a category isjudged by the binary classifier for every category. In contrast, our approach can simultaneously detect multiple categories of text using PMMs. We derive efficient learning and prediction algorithms forPMMs. We also empirically show that our method could significantly outperform the conventional binary methods when applied tomulti-labeled text categorization using real World Wide Web pages.


Second-order Learning Algorithm with Squared Penalty Term

Neural Information Processing Systems

This paper compares three penalty terms with respect to the efficiency ofsupervised learning, by using first-and second-order learning algorithms. Our experiments showed that for a reasonably adequate penaltyfactor, the combination of the squared penalty term and the second-order learning algorithm drastically improves the convergence performance more than 20 times over the other combinations, atthe same time bringing about a better generalization performance.


Second-order Learning Algorithm with Squared Penalty Term

Neural Information Processing Systems

This paper compares three penalty terms with respect to the efficiency of supervised learning, by using first-and second-order learning algorithms. Our experiments showed that for a reasonably adequate penalty factor, the combination of the squared penalty term and the second-order learning algorithm drastically improves the convergence performance more than 20 times over the other combinations, at the same time bringing about a better generalization performance.