Goto

Collaborating Authors

 Sahu, Sambit


Continual Pre-training of MoEs: How robust is your router?

arXiv.org Artificial Intelligence

Sparsely-activated Mixture of Experts (MoE) transformers are promising architectures for foundation models. Compared to dense transformers that require the same amount of floating point operations (FLOPs) per forward pass, MoEs benefit from improved sample efficiency at training time and achieve much stronger performance. Many closed-source and open-source frontier language models have thus adopted an MoE architecture. Naturally, practitioners will want to extend the capabilities of these models with large amounts of newly collected data without completely re-training them. Prior work has shown that a simple combination of replay and learning rate re-warming and re-decaying can enable the continual pre-training (CPT) of dense decoder-only transformers with minimal performance degradation compared to full re-training. In the case of decoder-only MoE transformers, however, it is unclear how the routing algorithm will impact continual pre-training performance: 1) do the MoE transformer's routers exacerbate forgetting relative to a dense model?; 2) do the routers maintain a balanced load on previous distributions after CPT?; 3) are the same strategies applied to dense models sufficient to continually pre-train MoE LLMs? In what follows, we conduct a large-scale (>2B parameter switch and DeepSeek MoE LLMs trained for 600B tokens) empirical study across four MoE transformers to answer these questions. Our results establish a surprising robustness to distribution shifts for both Sinkhorn-Balanced and Z-and-Aux-loss-balanced routing algorithms, even in MoEs continually pre-trained without replay. Moreover, we show that MoE LLMs maintain their sample efficiency (relative to a FLOP-matched dense model) during CPT and that they can match the performance of a fully re-trained MoE at a fraction of the cost.


RainbowPO: A Unified Framework for Combining Improvements in Preference Optimization

arXiv.org Artificial Intelligence

Recently, numerous preference optimization algorithms have been introduced as extensions to the Direct Preference Optimization (DPO) family. While these methods have successfully aligned models with human preferences, there is a lack of understanding regarding the contributions of their additional components. Moreover, fair and consistent comparisons are scarce, making it difficult to discern which components genuinely enhance downstream performance. In this work, we propose RainbowPO, a unified framework that demystifies the effectiveness of existing DPO methods by categorizing their key components into seven broad directions. We integrate these components into a single cohesive objective, enhancing the performance of each individual element. Through extensive experiments, we demonstrate that RainbowPO outperforms existing DPO variants. Additionally, we provide insights to guide researchers in developing new DPO methods and assist practitioners in their implementations.


LLM Surgery: Efficient Knowledge Unlearning and Editing in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have revolutionized various domains, yet their utility comes with significant challenges related to outdated or problematic knowledge embedded during pretraining. This paper addresses the challenge of modifying LLMs to unlearn problematic and outdated information while efficiently integrating new knowledge without retraining from scratch. Here, we propose LLM Surgery, a framework to efficiently modify LLM behaviour by optimizing a three component objective function that: (1) Performs reverse gradient on unlearning dataset (problematic and outdated information), (2) Performs gradient descent on the update dataset (new and updated information), and (3) Minimizes the KL divergence on the retain dataset (small subset of unchanged text), ensuring alignment between pretrained and modified model outputs. Due to the lack of publicly available datasets specifically tailored for our novel task, we compiled a new dataset and an evaluation benchmark. Using Llama2-7B, we demonstrate that LLM Surgery can achieve significant forgetting on the unlearn set, a 20\% increase in accuracy on the update set, and maintain performance on the retain set.