Plotting

 Sahu, Anit Kumar


Hierarchical Preference Optimization: Learning to achieve goals via feasible subgoals prediction

arXiv.org Artificial Intelligence

This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL) that addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks. HPO leverages maximum entropy reinforcement learning combined with token-level Direct Preference Optimization (DPO), eliminating the need for pre-trained reference policies that are typically unavailable in challenging robotic scenarios. Mathematically, we formulate HRL as a bi-level optimization problem and transform it into a primitive-regularized DPO formulation, ensuring feasible subgoal generation and avoiding degenerate solutions. Extensive experiments on challenging robotic navigation and manipulation tasks demonstrate impressive performance of HPO, where it shows an improvement of up to 35% over the baselines. Furthermore, ablation studies validate our design choices, and quantitative analyses confirm the ability of HPO to mitigate non-stationarity and infeasible subgoal generation issues in HRL.


Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs

arXiv.org Artificial Intelligence

This work focuses on leveraging and selecting from vast, unlabeled, open data to pre-fine-tune a pre-trained language model. The goal is to minimize the need for costly domain-specific data for subsequent fine-tuning while achieving desired performance levels. While many data selection algorithms have been designed for small-scale applications, rendering them unsuitable for our context, some emerging methods do cater to language data scales. However, they often prioritize data that aligns with the target distribution. While this strategy may be effective when training a model from scratch, it can yield limited results when the model has already been pre-trained on a different distribution. Differing from prior work, our key idea is to select data that nudges the pre-training distribution closer to the target distribution. We show the optimality of this approach for fine-tuning tasks under certain conditions. We demonstrate the efficacy of our methodology across a diverse array of tasks (NLU, NLG, zero-shot) with models up to 2.7B, showing that it consistently surpasses other selection methods. Moreover, our proposed method is significantly faster than existing techniques, scaling to millions of samples within a single GPU hour. Our code is open-sourced (Code repository: https://anonymous.4open.science/r/DV4LLM-D761/ ). While fine-tuning offers significant potential for enhancing performance across diverse tasks, its associated costs often limit its widespread adoption; with this work, we hope to lay the groundwork for cost-effective fine-tuning, making its benefits more accessible.


RealFM: A Realistic Mechanism to Incentivize Federated Participation and Contribution

arXiv.org Artificial Intelligence

Edge device participation in federating learning (FL) is typically studied under the lens of device-server communication (e.g., device dropout) and assumes an undying desire from edge devices to participate in FL. As a result, current FL frameworks are flawed when implemented in realistic settings, with many encountering the free-rider dilemma. In a step to push FL towards realistic settings, we propose RealFM: the first federated mechanism that (1) realistically models device utility, (2) incentivizes data contribution and device participation, (3) provably removes the free-rider dilemma, and (4) relaxes assumptions on data homogeneity, data sharing, and monetary reward payments. Compared to previous FL mechanisms, RealFM allows for a non-linear relationship between model accuracy and utility, which improves the utility gained by the server and participating devices. On real-world data, RealFM improves device and server utility, as well as data contribution, by over 3 and 4 magnitudes respectively compared to baselines.


Federated Representation Learning for Automatic Speech Recognition

arXiv.org Artificial Intelligence

Federated Learning (FL) is a privacy-preserving paradigm, allowing edge devices to learn collaboratively without sharing data. Edge devices like Alexa and Siri are prospective sources of unlabeled audio data that can be tapped to learn robust audio representations. In this work, we bring Self-supervised Learning (SSL) and FL together to learn representations for Automatic Speech Recognition respecting data privacy constraints. We use the speaker and chapter information in the unlabeled speech dataset, Libri-Light, to simulate non-IID speaker-siloed data distributions and pre-train an LSTM encoder with the Contrastive Predictive Coding framework with FedSGD. We show that the pre-trained ASR encoder in FL performs as well as a centrally pre-trained model and produces an improvement of 12-15% (WER) compared to no pre-training. We further adapt the federated pre-trained models to a new language, French, and show a 20% (WER) improvement over no pre-training.


Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources

arXiv.org Artificial Intelligence

Traditionally, data selection has been studied in settings where all samples from prospective sources are fully revealed to a machine learning developer. However, in practical data exchange scenarios, data providers often reveal only a limited subset of samples before an acquisition decision is made. Recently, there have been efforts to fit scaling laws that predict model performance at any size and data source composition using the limited available samples. However, these scaling functions are black-box, computationally expensive to fit, highly susceptible to overfitting, or/and difficult to optimize for data selection. This paper proposes a framework called , which predicts model performance and supports data selection decisions based on partial samples of prospective data sources. Our approach distinguishes itself from existing work by introducing a novel *two-stage* performance inference process. In the first stage, we leverage the Optimal Transport distance to predict the model's performance for any data mixture ratio within the range of disclosed data sizes. In the second stage, we extrapolate the performance to larger undisclosed data sizes based on a novel parameter-free mapping technique inspired by neural scaling laws. We further derive an efficient gradient-based method to select data sources based on the projected model performance. Evaluation over a diverse range of applications demonstrates that significantly improves existing performance scaling approaches in terms of both the accuracy of performance inference and the computation costs associated with constructing the performance predictor. Also, outperforms by a wide margin in data selection effectiveness compared to a range of other off-the-shelf solutions.


FedBC: Calibrating Global and Local Models via Federated Learning Beyond Consensus

arXiv.org Artificial Intelligence

In this work, we quantitatively calibrate the performance of global and local models in federated learning through a multi-criterion optimization-based framework, which we cast as a constrained program. The objective of a device is its local objective, which it seeks to minimize while satisfying nonlinear constraints that quantify the proximity between the local and the global model. By considering the Lagrangian relaxation of this problem, we develop a novel primal-dual method called Federated Learning Beyond Consensus (\texttt{FedBC}). Theoretically, we establish that \texttt{FedBC} converges to a first-order stationary point at rates that matches the state of the art, up to an additional error term that depends on a tolerance parameter introduced to scalarize the multi-criterion formulation. Finally, we demonstrate that \texttt{FedBC} balances the global and local model test accuracy metrics across a suite of datasets (Synthetic, MNIST, CIFAR-10, Shakespeare), achieving competitive performance with state-of-the-art.


Federated Learning Challenges and Opportunities: An Outlook

arXiv.org Artificial Intelligence

Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.


Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits

arXiv.org Machine Learning

Local Stochastic Gradient Descent (SGD) with periodic model averaging (FedAvg) is a foundational algorithm in Federated Learning. The algorithm independently runs SGD on multiple workers and periodically averages the model across all the workers. When local SGD runs with many workers, however, the periodic averaging causes a significant model discrepancy across the workers making the global loss converge slowly. While recent advanced optimization methods tackle the issue focused on non-IID settings, there still exists the model discrepancy issue due to the underlying periodic model averaging. We propose a partial model averaging framework that mitigates the model discrepancy issue in Federated Learning. The partial averaging encourages the local models to stay close to each other on parameter space, and it enables to more effectively minimize the global loss. Given a fixed number of iterations and a large number of workers (128), the partial averaging achieves up to 2.2% higher validation accuracy than the periodic full averaging.


Hard Label Black-box Adversarial Attacks in Low Query Budget Regimes

arXiv.org Machine Learning

We focus on the problem of black-box adversarial attacks, where the aim is to generate adversarial examples for deep learning models solely based on information limited to output labels (hard label) to a queried data input. We use Bayesian optimization (BO) to specifically cater to scenarios involving low query budgets to develop efficient adversarial attacks. Issues with BO's performance in high dimensions are avoided by searching for adversarial examples in structured low-dimensional subspace. Our proposed approach achieves better performance to state of the art black-box adversarial attacks that require orders of magnitude more queries than ours.


Black-box Adversarial Attacks with Bayesian Optimization

arXiv.org Machine Learning

October 1, 2019 Abstract We focus on the problem of black-box adversarial attacks, where the aim is to generate adversarial examples using information limited to loss function evaluations of input-output pairs. We use Bayesian optimization (BO) to specifically cater to scenarios involving low query budgets to develop query efficient adversarial attacks. We alleviate the issues surrounding BO in regards to optimizing high dimensional deep learning models by effective dimension upsampling techniques. Our proposed approach achieves performance comparable to the state of the art black-box adversarial attacks albeit with a much lower average query count. In particular, in low query budget regimes, our proposed method reduces the query count up to 80% with respect to the state of the art methods. 1 Introduction Neural networks are now well-known to be vulnerable to adversarial examples: additive perturbations that, when applied to the input, change the network's output classification [9]. Work investigating this lack of robustness to adversarial examples often takes the form of a back-and-forth between newly proposed adversarial attacks, methods for quickly and efficiently crafting adversarial examples, and corresponding defenses that modify the classifier at either training or test time to improve robustness. The most successful adversarial attacks use gradient-based optimization methods [9, 17], which require complete knowledge of the architecture and parameters of the target network; this assumption is referred to as the white-box attack setting.