Goto

Collaborating Authors

 Saha, Sriparna


Deciphering the complaint aspects: Towards an aspect-based complaint identification model with video complaint dataset in finance

arXiv.org Artificial Intelligence

In today's competitive marketing landscape, effective complaint management is crucial for customer service and business success. Video complaints, integrating text and image content, offer invaluable insights by addressing customer grievances and delineating product benefits and drawbacks. However, comprehending nuanced complaint aspects within vast daily multimodal financial data remains a formidable challenge. Addressing this gap, we have curated a proprietary multimodal video complaint dataset comprising 433 publicly accessible instances. Each instance is meticulously annotated at the utterance level, encompassing five distinct categories of financial aspects and their associated complaint labels. To support this endeavour, we introduce Solution 3.0, a model designed for multimodal aspect-based complaint identification task. Solution 3.0 is tailored to perform three key tasks: 1) handling multimodal features ( audio and video), 2) facilitating multilabel aspect classification, and 3) conducting multitasking for aspect classifications and complaint identification parallelly. Solution 3.0 utilizes a CLIP-based dual frozen encoder with an integrated image segment encoder for global feature fusion, enhanced by contextual attention (ISEC) to improve accuracy and efficiency. Our proposed framework surpasses current multimodal baselines, exhibiting superior performance across nearly all metrics by opening new ways to strengthen appropriate customer care initiatives and effectively assisting individuals in resolving their problems.


The Multilingual Mind : A Survey of Multilingual Reasoning in Language Models

arXiv.org Artificial Intelligence

While reasoning and multilingual capabilities in Language Models (LMs) have achieved remarkable progress in recent years, their integration into a unified paradigm, multilingual reasoning, is at a nascent stage. Multilingual reasoning requires language models to handle logical reasoning across languages while addressing misalignment, biases, and challenges in low-resource settings. This survey provides the first in-depth review of multilingual reasoning in LMs. In this survey, we provide a systematic overview of existing methods that leverage LMs for multilingual reasoning, specifically outlining the challenges, motivations, and foundational aspects of applying language models to reason across diverse languages. We provide an overview of the standard data resources used for training multilingual reasoning in LMs and the evaluation benchmarks employed to assess their multilingual capabilities. Next, we analyze various state-of-the-art methods and their performance on these benchmarks. Finally, we explore future research opportunities to improve multilingual reasoning in LMs, focusing on enhancing their ability to handle diverse languages and complex reasoning tasks.


FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) marks a transformative approach to distributed model training by combining locally optimized models from various clients into a unified global model. While FL preserves data privacy by eliminating centralized storage, it encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model due to the heterogeneity in client data distributions. Among the various forms of data heterogeneity, label skew emerges as a particularly formidable and prevalent issue, especially in domains such as image classification. To address these challenges, we begin with comprehensive experiments to pinpoint the underlying issues in the FL training process. Based on our findings, we then introduce an innovative dual-strategy approach designed to effectively resolve these issues. First, we introduce an adaptive loss function for client-side training, meticulously crafted to preserve previously acquired knowledge while maintaining an optimal equilibrium between local optimization and global model coherence. Secondly, we develop a dynamic aggregation strategy for aggregating client models at the server. This approach adapts to each client's unique learning patterns, effectively addressing the challenges of diverse data across the network. Our comprehensive evaluation, conducted across three diverse real-world datasets, coupled with theoretical convergence guarantees, demonstrates the superior efficacy of our method compared to several established state-of-the-art approaches.


ToxVidLM: A Multimodal Framework for Toxicity Detection in Code-Mixed Videos

arXiv.org Artificial Intelligence

In an era of rapidly evolving internet technology, the surge in multimodal content, including videos, has expanded the horizons of online communication. However, the detection of toxic content in this diverse landscape, particularly in low-resource code-mixed languages, remains a critical challenge. While substantial research has addressed toxic content detection in textual data, the realm of video content, especially in non-English languages, has been relatively underexplored. This paper addresses this research gap by introducing a benchmark dataset, the first of its kind, consisting of 931 videos with 4021 code-mixed Hindi-English utterances collected from YouTube. Each utterance within this dataset has been meticulously annotated for toxicity, severity, and sentiment labels. We have developed an advanced Multimodal Multitask framework built for Toxicity detection in Video Content by leveraging Language Models (LMs), crafted for the primary objective along with the additional tasks of conducting sentiment and severity analysis. ToxVidLM incorporates three key modules - the Encoder module, Cross-Modal Synchronization module, and Multitask module - crafting a generic multimodal LM customized for intricate video classification tasks. Our experiments reveal that incorporating multiple modalities from the videos substantially enhances the performance of toxic content detection by achieving an Accuracy and Weighted F1 score of 94.29% and 94.35%, respectively.


FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging

arXiv.org Artificial Intelligence

Despite recent advancements in federated learning (FL) for medical image diagnosis, addressing data heterogeneity among clients remains a significant challenge for practical implementation. A primary hurdle in FL arises from the non-IID nature of data samples across clients, which typically results in a decline in the performance of the aggregated global model. In this study, we introduce FedMRL, a novel federated multi-agent deep reinforcement learning framework designed to address data heterogeneity. FedMRL incorporates a novel loss function to facilitate fairness among clients, preventing bias in the final global model. Additionally, it employs a multi-agent reinforcement learning (MARL) approach to calculate the proximal term $(\mu)$ for the personalized local objective function, ensuring convergence to the global optimum. Furthermore, FedMRL integrates an adaptive weight adjustment method using a Self-organizing map (SOM) on the server side to counteract distribution shifts among clients' local data distributions. We assess our approach using two publicly available real-world medical datasets, and the results demonstrate that FedMRL significantly outperforms state-of-the-art techniques, showing its efficacy in addressing data heterogeneity in federated learning. The code can be found here~{\url{https://github.com/Pranabiitp/FedMRL}}.


MemeGuard: An LLM and VLM-based Framework for Advancing Content Moderation via Meme Intervention

arXiv.org Artificial Intelligence

In the digital world, memes present a unique challenge for content moderation due to their potential to spread harmful content. Although detection methods have improved, proactive solutions such as intervention are still limited, with current research focusing mostly on text-based content, neglecting the widespread influence of multimodal content like memes. Addressing this gap, we present \textit{MemeGuard}, a comprehensive framework leveraging Large Language Models (LLMs) and Visual Language Models (VLMs) for meme intervention. \textit{MemeGuard} harnesses a specially fine-tuned VLM, \textit{VLMeme}, for meme interpretation, and a multimodal knowledge selection and ranking mechanism (\textit{MKS}) for distilling relevant knowledge. This knowledge is then employed by a general-purpose LLM to generate contextually appropriate interventions. Another key contribution of this work is the \textit{\textbf{I}ntervening} \textit{\textbf{C}yberbullying in \textbf{M}ultimodal \textbf{M}emes (ICMM)} dataset, a high-quality, labeled dataset featuring toxic memes and their corresponding human-annotated interventions. We leverage \textit{ICMM} to test \textit{MemeGuard}, demonstrating its proficiency in generating relevant and effective responses to toxic memes.


Enhancing Adverse Drug Event Detection with Multimodal Dataset: Corpus Creation and Model Development

arXiv.org Artificial Intelligence

The mining of adverse drug events (ADEs) is pivotal in pharmacovigilance, enhancing patient safety by identifying potential risks associated with medications, facilitating early detection of adverse events, and guiding regulatory decision-making. Traditional ADE detection methods are reliable but slow, not easily adaptable to large-scale operations, and offer limited information. With the exponential increase in data sources like social media content, biomedical literature, and Electronic Medical Records (EMR), extracting relevant ADE-related information from these unstructured texts is imperative. Previous ADE mining studies have focused on text-based methodologies, overlooking visual cues, limiting contextual comprehension, and hindering accurate interpretation. To address this gap, we present a MultiModal Adverse Drug Event (MMADE) detection dataset, merging ADE-related textual information with visual aids. Additionally, we introduce a framework that leverages the capabilities of LLMs and VLMs for ADE detection by generating detailed descriptions of medical images depicting ADEs, aiding healthcare professionals in visually identifying adverse events. Using our MMADE dataset, we showcase the significance of integrating visual cues from images to enhance overall performance. This approach holds promise for patient safety, ADE awareness, and healthcare accessibility, paving the way for further exploration in personalized healthcare.


Unveiling Hallucination in Text, Image, Video, and Audio Foundation Models: A Comprehensive Survey

arXiv.org Artificial Intelligence

The rapid advancement of foundation models (FMs) across language, image, audio, and video domains has shown remarkable capabilities in diverse tasks. However, the proliferation of FMs brings forth a critical challenge: the potential to generate hallucinated outputs, particularly in high-stakes applications. The tendency of foundation models to produce hallucinated content arguably represents the biggest hindrance to their widespread adoption in real-world scenarios, especially in domains where reliability and accuracy are paramount. This survey paper presents a comprehensive overview of recent developments that aim to identify and mitigate the problem of hallucination in FMs, spanning text, image, video, and audio modalities. By synthesizing recent advancements in detecting and mitigating hallucination across various modalities, the paper aims to provide valuable insights for researchers, developers, and practitioners. Essentially, it establishes a clear framework encompassing definition, taxonomy, and detection strategies for addressing hallucination in multimodal foundation models, laying the foundation for future research in this pivotal area.


Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions

arXiv.org Artificial Intelligence

The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.


A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications

arXiv.org Artificial Intelligence

Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.