Saha, Ankan
AlphaPO -- Reward shape matters for LLM alignment
Gupta, Aman, Tang, Shao, Song, Qingquan, Zhu, Sirou, Hong, Jiwoo, Saha, Ankan, Gupta, Viral, Lee, Noah, Kim, Eunki, Zhu, Jason, Pillai, Natesh, Keerthi, S. Sathiya
Reinforcement Learning with Human Feedback (RLHF) and its variants have made huge strides toward the effective alignment of large language models (LLMs) to follow instructions and reflect human values. More recently, Direct Alignment Algorithms (DAAs) have emerged in which the reward modeling stage of RLHF is skipped by characterizing the reward directly as a function of the policy being learned. Examples include Direct Preference Optimization (DPO) and Simple Preference Optimization (SimPO). These methods often suffer from likelihood displacement, a phenomenon by which the probabilities of preferred responses are often reduced undesirably. In this paper, we argue that, for DAAs the reward (function) shape matters. We introduce AlphaPO, a new DAA method that leverages an $\alpha$-parameter to help change the shape of the reward function beyond the standard log reward. AlphaPO helps maintain fine-grained control over likelihood displacement and over-optimization. Compared to SimPO, one of the best performing DAAs, AlphaPO leads to about 7\% to 10\% relative improvement in alignment performance for the instruct versions of Mistral-7B and Llama3-8B. The analysis and results presented highlight the importance of the reward shape, and how one can systematically change it to affect training dynamics, as well as improve alignment performance.
Lower Bounds on Rate of Convergence of Cutting Plane Methods
Zhang, Xinhua, Saha, Ankan, Vishwanathan, S.v.n.
In a recent paper Joachims (2006) presented SVM-Perf, a cutting plane method (CPM) for training linear Support Vector Machines (SVMs) which converges to an $\epsilon$ accurate solution in $O(1/\epsilon {2})$ iterations. By tightening the analysis, Teo et al. (2010) showed that $O(1/\epsilon)$ iterations suffice. Given the impressive convergence speed of CPM on a number of practical problems, it was conjectured that these rates could be further improved. In this paper we disprove this conjecture. We present counter examples which are not only applicable for training linear SVMs with hinge loss, but also hold for support vector methods which optimize a \emph{multivariate} performance score.
Large-Scale Quadratically Constrained Quadratic Program via Low-Discrepancy Sequences
Basu, Kinjal, Saha, Ankan, Chatterjee, Shaunak
We consider the problem of solving a large-scale Quadratically Constrained Quadratic Program. Such problems occur naturally in many scientific and web applications. Although there are efficient methods which tackle this problem, they are mostly not scalable. In this paper, we develop a method that transforms the quadratic constraint into a linear form by a sampling a set of low-discrepancy points. The transformed problem can then be solved by applying any state-of-the-art large-scale solvers. We show the convergence of our approximate solution to the true solution as well as some finite sample error bounds. Experimental results are also shown to prove scalability in practice.
Large-Scale Quadratically Constrained Quadratic Program via Low-Discrepancy Sequences
Basu, Kinjal, Saha, Ankan, Chatterjee, Shaunak
We consider the problem of solving a large-scale Quadratically Constrained Quadratic Program. Such problems occur naturally in many scientific and web applications. Although there are efficient methods which tackle this problem, they are mostly not scalable. In this paper, we develop a method that transforms the quadratic constraint into a linear form by sampling a set of low-discrepancy points. The transformed problem can then be solved by applying any state-of-the-art large-scale quadratic programming solvers. We show the convergence of our approximate solution to the true solution as well as some finite sample error bounds. Experimental results are also shown to prove scalability as well as improved quality of approximation in practice.
Constrained Multi-Slot Optimization for Ranking Recommendations
Basu, Kinjal, Chatterjee, Shaunak, Saha, Ankan
Ranking items to be recommended to users is one of the main problems in large scale social media applications. This problem can be set up as a multi-objective optimization problem to allow for trading off multiple, potentially conflicting objectives (that are driven by those items) against each other. Most previous approaches to this problem optimize for a single slot without considering the interaction effect of these items on one another. In this paper, we develop a constrained multi-slot optimization formulation, which allows for modeling interactions among the items on the different slots. We characterize the solution in terms of problem parameters and identify conditions under which an efficient solution is possible. The problem formulation results in a quadratically constrained quadratic program (QCQP). We provide an algorithm that gives us an efficient solution by relaxing the constraints of the QCQP minimally. Through simulated experiments, we show the benefits of modeling interactions in a multi-slot ranking context, and the speed and accuracy of our QCQP approximate solver against other state of the art methods.
Large scale multi-objective optimization: Theoretical and practical challenges
Basu, Kinjal, Saha, Ankan, Chatterjee, Shaunak
Multi-objective optimization (MOO) is a well-studied problem for several important recommendation problems. While multiple approaches have been proposed, in this work, we focus on using constrained optimization formulations (e.g., quadratic and linear programs) to formulate and solve MOO problems. This approach can be used to pick desired operating points on the trade-off curve between multiple objectives. It also works well for internet applications which serve large volumes of online traffic, by working with Lagrangian duality formulation to connect dual solutions (computed offline) with the primal solutions (computed online). We identify some key limitations of this approach -- namely the inability to handle user and item level constraints, scalability considerations and variance of dual estimates introduced by sampling processes. We propose solutions for each of the problems and demonstrate how through these solutions we significantly advance the state-of-the-art in this realm. Our proposed methods can exactly handle user and item (and other such local) constraints, achieve a $100\times$ scalability boost over existing packages in R and reduce variance of dual estimates by two orders of magnitude.
The Interplay Between Stability and Regret in Online Learning
Saha, Ankan, Jain, Prateek, Tewari, Ambuj
This paper considers the stability of online learning algorithms and its implications for learnability (bounded regret). We introduce a novel quantity called {\em forward regret} that intuitively measures how good an online learning algorithm is if it is allowed a one-step look-ahead into the future. We show that given stability, bounded forward regret is equivalent to bounded regret. We also show that the existence of an algorithm with bounded regret implies the existence of a stable algorithm with bounded regret and bounded forward regret. The equivalence results apply to general, possibly non-convex problems. To the best of our knowledge, our analysis provides the first general connection between stability and regret in the online setting that is not restricted to a particular class of algorithms. Our stability-regret connection provides a simple recipe for analyzing regret incurred by any online learning algorithm. Using our framework, we analyze several existing online learning algorithms as well as the "approximate" versions of algorithms like RDA that solve an optimization problem at each iteration. Our proofs are simpler than existing analysis for the respective algorithms, show a clear trade-off between stability and forward regret, and provide tighter regret bounds in some cases. Furthermore, using our recipe, we analyze "approximate" versions of several algorithms such as follow-the-regularized-leader (FTRL) that requires solving an optimization problem at each step.
Smoothing Multivariate Performance Measures
Zhang, Xinhua, Saha, Ankan, Vishwanatan, S. V. N.
A Support Vector Method for multivariate performance measures was recently introduced by Joachims (2005). The underlying optimization problem is currently solved using cutting plane methods such as SVM-Perf and BMRM. One can show that these algorithms converge to an eta accurate solution in O(1/Lambda*e) iterations, where lambda is the trade-off parameter between the regularizer and the loss function. We present a smoothing strategy for multivariate performance scores, in particular precision/recall break-even point and ROCArea. When combined with Nesterov's accelerated gradient algorithm our smoothing strategy yields an optimization algorithm which converges to an eta accurate solution in O(min{1/e,1/sqrt(lambda*e)}) iterations. Furthermore, the cost per iteration of our scheme is the same as that of SVM-Perf and BMRM. Empirical evaluation on a number of publicly available datasets shows that our method converges significantly faster than cutting plane methods without sacrificing generalization ability.
Lower Bounds on Rate of Convergence of Cutting Plane Methods
Zhang, Xinhua, Saha, Ankan, Vishwanathan, S.v.n.
In a recent paper Joachims (2006) presented SVM-Perf, a cutting plane method (CPM) for training linear Support Vector Machines (SVMs) which converges to an $\epsilon$ accurate solution in $O(1/\epsilon^{2})$ iterations. By tightening the analysis, Teo et al. (2010) showed that $O(1/\epsilon)$ iterations suffice. Given the impressive convergence speed of CPM on a number of practical problems, it was conjectured that these rates could be further improved. In this paper we disprove this conjecture. We present counter examples which are not only applicable for training linear SVMs with hinge loss, but also hold for support vector methods which optimize a \emph{multivariate} performance score. However, surprisingly, these problems are not inherently hard. By exploiting the structure of the objective function we can devise an algorithm that converges in $O(1/\sqrt{\epsilon})$ iterations.
Lower Bounds for BMRM and Faster Rates for Training SVMs
Saha, Ankan, Zhang, Xinhua, Vishwanathan, S. V. N.
Regularized risk minimization with the binary hinge loss and its variants lies at the heart of many machine learning problems. Bundle methods for regularized risk minimization (BMRM) and the closely related SVMStruct are considered the best general purpose solvers to tackle this problem. It was recently shown that BMRM requires $O(1/\epsilon)$ iterations to converge to an $\epsilon$ accurate solution. In the first part of the paper we use the Hadamard matrix to construct a regularized risk minimization problem and show that these rates cannot be improved. We then show how one can exploit the structure of the objective function to devise an algorithm for the binary hinge loss which converges to an $\epsilon$ accurate solution in $O(1/\sqrt{\epsilon})$ iterations.