Saffiotti, Alessandro
Preface
Saffiotti, Alessandro (Orebro University) | Hawes, Nick (University of Birmingham) | Konidaris, George (Massachusetts Institute of Technology) | Tenolth, Moritz (University of Bremen)
This workshop collects interdisciplinary works in the integration of AI and robotics, with an emphasis toward the development of complete intelligent robots. The workshop will discuss questions like: (1) What are the methods and tools that can be transferred between the two fields? (2) What are the new research questions that must be addressed to enable this transfer? (3) What new application opportunities will be created? (4) What is the scientific profile needed to make progress in this combined field? (5) How can we foster the creation and consolidation of a truly integrated community?
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.