Saeed, Mohamed
Breaking Down the Hierarchy: A New Approach to Leukemia Classification
Hamdi, Ibraheem, El-Gendy, Hosam, Sharshar, Ahmed, Saeed, Mohamed, Ridzuan, Muhammad, Hashmi, Shahrukh K., Syed, Naveed, Mirza, Imran, Hussain, Shakir, Abdalla, Amira Mahmoud, Yaqub, Mohammad
The complexities inherent to leukemia, multifaceted cancer affecting white blood cells, pose considerable diagnostic and treatment challenges, primarily due to reliance on laborious morphological analyses and expert judgment that are susceptible to errors. Addressing these challenges, this study presents a refined, comprehensive strategy leveraging advanced deep-learning techniques for the classification of leukemia subtypes. We commence by developing a hierarchical label taxonomy, paving the way for differentiating between various subtypes of leukemia. The research further introduces a novel hierarchical approach inspired by clinical procedures capable of accurately classifying diverse types of leukemia alongside reactive and healthy cells. An integral part of this study involves a meticulous examination of the performance of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) as classifiers. The proposed method exhibits an impressive success rate, achieving approximately 90\% accuracy across all leukemia subtypes, as substantiated by our experimental results. A visual representation of the experimental findings is provided to enhance the model's explainability and aid in understanding the classification process.
Contrastive Pretraining for Echocardiography Segmentation with Limited Data
Saeed, Mohamed, Muhtaseb, Rand, Yaqub, Mohammad
Contrastive learning has proven useful in many applications where access to labelled data is limited. The lack of annotated data is particularly problematic in medical image segmentation as it is difficult to have clinical experts manually annotate large volumes of data such as cardiac structures in ultrasound images of the heart. In this paper, We propose a self supervised contrastive learning method to segment the left ventricle from echocardiography when limited annotated images exist. Furthermore, we study the effect of contrastive pretraining on two well-known segmentation networks, UNet and DeepLabV3. Our results show that contrastive pretraining helps improve the performance on left ventricle segmentation, particularly when annotated data is scarce. We show how to achieve comparable results to state-of-the-art fully supervised algorithms when we train our models in a self-supervised fashion followed by fine-tuning on just 5\% of the data. We show that our solution outperforms what is currently published on a large public dataset (EchoNet-Dynamic) achieving a Dice score of 0.9252. We also compare the performance of our solution on another smaller dataset (CAMUS) to demonstrate the generalizability of our proposed solution. The code is available at (https://github.com/BioMedIA-MBZUAI/contrastive-echo).