Sabrina, Fariza
Ensemble Learning based Anomaly Detection for IoT Cybersecurity via Bayesian Hyperparameters Sensitivity Analysis
Lai, Tin, Farid, Farnaz, Bello, Abubakar, Sabrina, Fariza
The Internet of Things (IoT) integrates more than billions of intelligent devices over the globe with the capability of communicating with other connected devices with little to no human intervention. IoT enables data aggregation and analysis on a large scale to improve life quality in many domains. In particular, data collected by IoT contain a tremendous amount of information for anomaly detection. The heterogeneous nature of IoT is both a challenge and an opportunity for cybersecurity. Traditional approaches in cybersecurity monitoring often require different kinds of data pre-processing and handling for various data types, which might be problematic for datasets that contain heterogeneous features. However, heterogeneous types of network devices can often capture a more diverse set of signals than a single type of device readings, which is particularly useful for anomaly detection. In this paper, we present a comprehensive study on using ensemble machine learning methods for enhancing IoT cybersecurity via anomaly detection. Rather than using one single machine learning model, ensemble learning combines the predictive power from multiple models, enhancing their predictive accuracy in heterogeneous datasets rather than using one single machine learning model. We propose a unified framework with ensemble learning that utilises Bayesian hyperparameter optimisation to adapt to a network environment that contains multiple IoT sensor readings. Experimentally, we illustrate their high predictive power when compared to traditional methods.
Classification and Explanation of Distributed Denial-of-Service (DDoS) Attack Detection using Machine Learning and Shapley Additive Explanation (SHAP) Methods
Wei, Yuanyuan, Jang-Jaccard, Julian, Singh, Amardeep, Sabrina, Fariza, Camtepe, Seyit
DDoS attacks involve overwhelming a target system with a large number of requests or traffic from multiple sources, disrupting the normal traffic of a targeted server, service, or network. Distinguishing between legitimate traffic and malicious traffic is a challenging task. It is possible to classify legitimate traffic and malicious traffic and analysis the network traffic by using machine learning and deep learning techniques. However, an inter-model explanation implemented to classify a traffic flow whether is benign or malicious is an important investigation of the inner working theory of the model to increase the trustworthiness of the model. Explainable Artificial Intelligence (XAI) can explain the decision-making of the machine learning models that can be classified and identify DDoS traffic. In this context, we proposed a framework that can not only classify legitimate traffic and malicious traffic of DDoS attacks but also use SHAP to explain the decision-making of the classifier model. To address this concern, we first adopt feature selection techniques to select the top 20 important features based on feature importance techniques (e.g., XGB-based SHAP feature importance). Following that, the Multi-layer Perceptron Network (MLP) part of our proposed model uses the optimized features of the DDoS attack dataset as inputs to classify legitimate and malicious traffic. We perform extensive experiments with all features and selected features. The evaluation results show that the model performance with selected features achieves above 99\% accuracy. Finally, to provide interpretability, XAI can be adopted to explain the model performance between the prediction results and features based on global and local explanations by SHAP, which can better explain the results achieved by our proposed framework.
Reconstruction-based LSTM-Autoencoder for Anomaly-based DDoS Attack Detection over Multivariate Time-Series Data
Wei, Yuanyuan, Jang-Jaccard, Julian, Sabrina, Fariza, Xu, Wen, Camtepe, Seyit, Dunmore, Aeryn
A Distributed Denial-of-service (DDoS) attack is a malicious attempt to disrupt the regular traffic of a targeted server, service, or network by sending a flood of traffic to overwhelm the target or its surrounding infrastructure. As technology improves, new attacks have been developed by hackers. Traditional statistical and shallow machine learning techniques can detect superficial anomalies based on shallow data and feature selection, however, these approaches cannot detect unseen DDoS attacks. In this context, we propose a reconstruction-based anomaly detection model named LSTM-Autoencoder (LSTM-AE) which combines two deep learning-based models for detecting DDoS attack anomalies. The proposed structure of long short-term memory (LSTM) networks provides units that work with each other to learn the long short-term correlation of data within a time series sequence. Autoencoders are used to identify the optimal threshold based on the reconstruction error rates evaluated on each sample across all time-series sequences. As such, a combination model LSTM-AE can not only learn delicate sub-pattern differences in attacks and benign traffic flows, but also minimize reconstructed benign traffic to obtain a lower range reconstruction error, with attacks presenting a larger reconstruction error. In this research, we trained and evaluated our proposed LSTM-AE model on reflection-based DDoS attacks (DNS, LDAP, and SNMP). The results of our experiments demonstrate that our method performs better than other state-of-the-art methods, especially for LDAP attacks, with an accuracy of over 99.
Generative Adversarial Networks for Malware Detection: a Survey
Dunmore, Aeryn, Jang-Jaccard, Julian, Sabrina, Fariza, Kwak, Jin
Since their proposal in the 2014 paper by Ian Goodfellow, there has been an explosion of research into the area of Generative Adversarial Networks. While they have been utilised in many fields, the realm of malware research is a problem space in which GANs have taken root. From balancing datasets to creating unseen examples in rare classes, GAN models offer extensive opportunities for application. This paper surveys the current research and literature for the use of Generative Adversarial Networks in the malware problem space. This is done with the hope that the reader may be able to gain an overall understanding as to what the Generative Adversarial model provides for this field, and for what areas within malware research it is best utilised. It covers the current related surveys, the different categories of GAN, and gives the outcomes of recent research into optimising GANs for different topics, as well as future directions for exploration.
IGRF-RFE: A Hybrid Feature Selection Method for MLP-based Network Intrusion Detection on UNSW-NB15 Dataset
Yin, Yuhua, Jang-Jaccard, Julian, Xu, Wen, Singh, Amardeep, Zhu, Jinting, Sabrina, Fariza, Kwak, Jin
The effectiveness of machine learning models is significantly affected by the size of the dataset and the quality of features as redundant and irrelevant features can radically degrade the performance. This paper proposes IGRF-RFE: a hybrid feature selection method tasked for multi-class network anomalies using a Multilayer perceptron (MLP) network. IGRF-RFE can be considered as a feature reduction technique based on both the filter feature selection method and the wrapper feature selection method. In our proposed method, we use the filter feature selection method, which is the combination of Information Gain and Random Forest Importance, to reduce the feature subset search space. Then, we apply recursive feature elimination(RFE) as a wrapper feature selection method to further eliminate redundant features recursively on the reduced feature subsets. Our experimental results obtained based on the UNSW-NB15 dataset confirm that our proposed method can improve the accuracy of anomaly detection while reducing the feature dimension. The results show that the feature dimension is reduced from 42 to 23 while the multi-classification accuracy of MLP is improved from 82.25% to 84.24%.
MSD-Kmeans: A Novel Algorithm for Efficient Detection of Global and Local Outliers
Wei, Yuanyuan, Jang-Jaccard, Julian, Sabrina, Fariza, McIntosh, Timothy
Outlier detection is a technique in data mining that aims to detect unusual or unexpected records in the dataset. Existing outlier detection algorithms have different pros and cons and exhibit different sensitivity to noisy data such as extreme values. In this paper, we propose a novel cluster-based outlier detection algorithm named MSD-Kmeans that combines the statistical method of Mean and Standard Deviation (MSD) and the machine learning clustering algorithm K-means to detect outliers more accurately with the better control of extreme values. There are two phases in this combination method of MSD-Kmeans: (1) applying MSD algorithm to eliminate as many noisy data to minimize the interference on clusters, and (2) applying K-means algorithm to obtain local optimal clusters. We evaluate our algorithm and demonstrate its effectiveness in the context of detecting possible overcharging of taxi fares, as greedy dishonest drivers may attempt to charge high fares by detouring. We compare the performance indicators of MSD-Kmeans with those of other outlier detection algorithms, such as MSD, K-means, Z-score, MIQR and LOF, and prove that the proposed MSD-Kmeans algorithm achieves the highest measure of precision, accuracy, and F-measure. We conclude that MSD-Kmeans can be used for effective and efficient outlier detection on data of varying quality on IoT devices.