Sabir, Ahmed
Women Wearing Lipstick: Measuring the Bias Between an Object and Its Related Gender
Sabir, Ahmed, Padró, Lluís
In this paper, we investigate the impact of objects on gender bias in image captioning systems. Our results show that only gender-specific objects have a strong gender bias (e.g., women-lipstick). In addition, we propose a visual semantic-based gender score that measures the degree of bias and can be used as a plug-in for any image captioning system. Our experiments demonstrate the utility of the gender score, since we observe that our score can measure the bias relation between a caption and its related gender; therefore, our score can be used as an additional metric to the existing Object Gender Co-Occ approach. Code and data are publicly available at \url{https://github.com/ahmedssabir/GenderScore}.
Word to Sentence Visual Semantic Similarity for Caption Generation: Lessons Learned
Sabir, Ahmed
This paper focuses on enhancing the captions generated by image-caption generation systems. We propose an approach for improving caption generation systems by choosing the most closely related output to the image rather than the most likely output produced by the model. Our model revises the language generation output beam search from a visual context perspective. We employ a visual semantic measure in a word and sentence level manner to match the proper caption to the related information in the image. The proposed approach can be applied to any caption system as a post-processing based method.
Visual Semantic Relatedness Dataset for Image Captioning
Sabir, Ahmed, Moreno-Noguer, Francesc, Padró, Lluís
Modern image captioning system relies heavily on extracting knowledge from images to capture the concept of a static story. In this paper, we propose a textual visual context dataset for captioning, in which the publicly available dataset COCO Captions (Lin et al., 2014) has been extended with information about the scene (such as objects in the image). Since this information has a textual form, it can be used to leverage any NLP task, such as text similarity or semantic relation methods, into captioning systems, either as an end-to-end training strategy or a post-processing based approach.