Goto

Collaborating Authors

 Saberian, Mohammad


Multi-Resolution Cascades for Multiclass Object Detection

Neural Information Processing Systems

An algorithm for learning fast multiclass object detection cascades is introduced. It produces multi-resolution (MRes) cascades, whose early stages are binary target vs. non-target detectors that eliminate false positives, late stages multiclass classifiers that finely discriminate target classes, and middle stages have intermediate numbers of classes, determined in a data-driven manner. This MRes structure is achieved with a new structurally biased boosting algorithm (SBBoost). SBBost extends previous multiclass boosting approaches, whose boosting mechanisms are shown to implement two complementary data-driven biases: 1) the standard bias towards examples difficult to classify, and 2) a bias towards difficult classes. It is shown that structural biases can be implemented by generalizing this class-based bias, so as to encourage the desired MRes structure.


Large Margin Discriminant Dimensionality Reduction in Prediction Space

Neural Information Processing Systems

In this paper we establish a duality between boosting and SVM, and use this to derive a novel discriminant dimensionality reduction algorithm. In particular, using the multiclass formulation of boosting and SVM we note that both use a combination of mapping and linear classification to maximize the multiclass margin. In SVM this is implemented using a pre-defined mapping (induced by the kernel) and optimizing the linear classifiers. In boosting the linear classifiers are pre-defined and the mapping (predictor) is learned through combination of weak learners. We argue that the intermediate mapping, e.g.


Gradient Boosted Decision Tree Neural Network

arXiv.org Machine Learning

In this paper we propose a method to build a neural network that is similar to an ensemble of decision trees. We first illustrate how to convert a learned ensemble of decision trees to a single neural network with one hidden layer and an input transformation. We then relax some properties of this network such as thresholds and activation functions to train an approximately equivalent decision tree ensemble. The final model, Hammock, is surprisingly simple: a fully connected two layers neural network where the input is quantized and one-hot encoded. Experiments on large and small datasets show this simple method can achieve performance similar to that of Gradient Boosted Decision Trees.


Large Margin Discriminant Dimensionality Reduction in Prediction Space

Neural Information Processing Systems

In this paper we establish a duality between boosting and SVM, and use this to derive a novel discriminant dimensionality reduction algorithm. In particular, using the multiclass formulation of boosting and SVM we note that both use a combination of mapping and linear classification to maximize the multiclass margin. In SVM this is implemented using a predefined mapping (induced by the kernel) and optimizing the linear classifiers. In boosting the linear classifiers are predefined and the mapping (predictor) is learned through a combination of weak learners. We argue that the intermediate mapping, i.e. boosting predictor, is preserving the discriminant aspects of the data and that by controlling the dimension of this mapping it is possible to obtain discriminant low dimensional representations for the data. We use the aforementioned duality and propose a new method, Large Margin Discriminant Dimensionality Reduction (LADDER) that jointly learns the mapping and the linear classifiers in an efficient manner. This leads to a data-driven mapping which can embed data into any number of dimensions. Experimental results show that this embedding can significantly improve performance on tasks such as hashing and image/scene classification.


Multi-Resolution Cascades for Multiclass Object Detection

Neural Information Processing Systems

An algorithm for learning fast multiclass object detection cascades is introduced. It produces multi-resolution (MRes) cascades, whose early stages are binary target vs. non-target detectors that eliminate false positives, late stages multiclass classifiers that finely discriminate target classes, and middle stages have intermediate numbers of classes, determined in a data-driven manner. This MRes structure is achieved with a new structurally biased boosting algorithm (SBBoost). SBBost extends previous multiclass boosting approaches, whose boosting mechanisms are shown to implement two complementary data-driven biases: 1) the standard bias towards examples difficult to classify, and 2) a bias towards difficult classes. It is shown that structural biases can be implemented by generalizing this class-based bias, so as to encourage the desired MRes structure. This is accomplished through a generalized definition of multiclass margin, which includes a set of bias parameters. SBBoost is a boosting algorithm for maximization of this margin. It can also be interpreted as standard multiclass boosting algorithm augmented with margin thresholds or a cost-sensitive boosting algorithm with costs defined by the bias parameters. A stage adaptive bias policy is then introduced to determine bias parameters in a data driven manner. This is shown to produce MRes cascades that have high detection rate and are computationally efficient. Experiments on multiclass object detection show improved performance over previous solutions.