Goto

Collaborating Authors

 Saadany, Hadeel


Centrality-aware Product Retrieval and Ranking

arXiv.org Artificial Intelligence

This paper addresses the challenge of improving user experience on e-commerce platforms by enhancing product ranking relevant to users' search queries. Ambiguity and complexity of user queries often lead to a mismatch between the user's intent and retrieved product titles or documents. Recent approaches have proposed the use of Transformer-based models, which need millions of annotated query-title pairs during the pre-training stage, and this data often does not take user intent into account. To tackle this, we curate samples from existing datasets at eBay, manually annotated with buyer-centric relevance scores and centrality scores, which reflect how well the product title matches the users' intent. We introduce a User-intent Centrality Optimization (UCO) approach for existing models, which optimises for the user intent in semantic product search. To that end, we propose a dual-loss based optimisation to handle hard negatives, i.e., product titles that are semantically relevant but do not reflect the user's intent. Our contributions include curating challenging evaluation sets and implementing UCO, resulting in significant product ranking efficiency improvements observed for different evaluation metrics. Our work aims to ensure that the most buyer-centric titles for a query are ranked higher, thereby, enhancing the user experience on e-commerce platforms.


Cyber Risks of Machine Translation Critical Errors : Arabic Mental Health Tweets as a Case Study

arXiv.org Artificial Intelligence

With the advent of Neural Machine Translation (NMT) systems, the MT output has reached unprecedented accuracy levels which resulted in the ubiquity of MT tools on almost all online platforms with multilingual content. However, NMT systems, like other state-of-the-art AI generative systems, are prone to errors that are deemed machine hallucinations. The problem with NMT hallucinations is that they are remarkably \textit{fluent} hallucinations. Since they are trained to produce grammatically correct utterances, NMT systems are capable of producing mistranslations that are too fluent to be recognised by both users of the MT tool, as well as by automatic quality metrics that are used to gauge their performance. In this paper, we introduce an authentic dataset of machine translation critical errors to point to the ethical and safety issues involved in the common use of MT. The dataset comprises mistranslations of Arabic mental health postings manually annotated with critical error types. We also show how the commonly used quality metrics do not penalise critical errors and highlight this as a critical issue that merits further attention from researchers.


Google Translate Error Analysis for Mental Healthcare Information: Evaluating Accuracy, Comprehensibility, and Implications for Multilingual Healthcare Communication

arXiv.org Artificial Intelligence

This study explores the use of Google Translate (GT) for translating mental healthcare (MHealth) information and evaluates its accuracy, comprehensibility, and implications for multilingual healthcare communication through analysing GT output in the MHealth domain from English to Persian, Arabic, Turkish, Romanian, and Spanish. Two datasets comprising MHealth information from the UK National Health Service website and information leaflets from The Royal College of Psychiatrists were used. Native speakers of the target languages manually assessed the GT translations, focusing on medical terminology accuracy, comprehensibility, and critical syntactic/semantic errors. GT output analysis revealed challenges in accurately translating medical terminology, particularly in Arabic, Romanian, and Persian. Fluency issues were prevalent across various languages, affecting comprehension, mainly in Arabic and Spanish. Critical errors arose in specific contexts, such as bullet-point formatting, specifically in Persian, Turkish, and Romanian. Although improvements are seen in longer-text translations, there remains a need to enhance accuracy in medical and mental health terminology and fluency, whilst also addressing formatting issues for a more seamless user experience. The findings highlight the need to use customised translation engines for Mhealth translation and the challenges when relying solely on machine-translated medical content, emphasising the crucial role of human reviewers in multilingual healthcare communication.


A Semi-supervised Approach for a Better Translation of Sentiment in Dialectical Arabic UGT

arXiv.org Artificial Intelligence

In the online world, Machine Translation (MT) systems are extensively used to translate User-Generated Text (UGT) such as reviews, tweets, and social media posts, where the main message is often the author's positive or negative attitude towards the topic of the text. However, MT systems still lack accuracy in some low-resource languages and sometimes make critical translation errors that completely flip the sentiment polarity of the target word or phrase and hence delivers a wrong affect message. This is particularly noticeable in texts that do not follow common lexico-grammatical standards such as the dialectical Arabic (DA) used on online platforms. In this research, we aim to improve the translation of sentiment in UGT written in the dialectical versions of the Arabic language to English. Given the scarcity of gold-standard parallel data for DA-EN in the UGT domain, we introduce a semi-supervised approach that exploits both monolingual and parallel data for training an NMT system initialised by a cross-lingual language model trained with supervised and unsupervised modeling objectives. We assess the accuracy of sentiment translation by our proposed system through a numerical 'sentiment-closeness' measure as well as human evaluation. We will show that our semi-supervised MT system can significantly help with correcting sentiment errors detected in the online translation of dialectical Arabic UGT.


Better Transcription of UK Supreme Court Hearings

arXiv.org Artificial Intelligence

Transcription of legal proceedings is very important to enable access to justice. However, speech transcription is an expensive and slow process. In this paper we describe part of a combined research and industrial project for building an automated transcription tool designed specifically for the Justice sector in the UK. We explain the challenges involved in transcribing court room hearings and the Natural Language Processing (NLP) techniques we employ to tackle these challenges. We will show that fine-tuning a generic off-the-shelf pre-trained Automatic Speech Recognition (ASR) system with an in-domain language model as well as infusing common phrases extracted with a collocation detection model can improve not only the Word Error Rate (WER) of the transcribed hearings but avoid critical errors that are specific of the legal jargon and terminology commonly used in British courts.