Goto

Collaborating Authors

 Sa, Christopher M. De


Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees

Neural Information Processing Systems

Gibbs sampling is a Markov chain Monte Carlo method that is often used for learning and inference on graphical models. Minibatching, in which a small random subset of the graph is used at each iteration, can help make Gibbs sampling scale to large graphical models by reducing its computational cost. In this paper, we propose a new auxiliary-variable minibatched Gibbs sampling method, {\it Poisson-minibatching Gibbs}, which both produces unbiased samples and has a theoretical guarantee on its convergence rate. In comparison to previous minibatched Gibbs algorithms, Poisson-minibatching Gibbs supports fast sampling from continuous state spaces and avoids the need for a Metropolis-Hastings correction on discrete state spaces. We demonstrate the effectiveness of our method on multiple applications and in comparison with both plain Gibbs and previous minibatched methods.


Gaussian Quadrature for Kernel Features

Neural Information Processing Systems

Kernel methods have recently attracted resurgent interest, showing performance competitive with deep neural networks in tasks such as speech recognition. The random Fourier features map is a technique commonly used to scale up kernel machines, but employing the randomized feature map means that $O(\epsilon {-2})$ samples are required to achieve an approximation error of at most $\epsilon$. We investigate some alternative schemes for constructing feature maps that are deterministic, rather than random, by approximating the kernel in the frequency domain using Gaussian quadrature. We show that deterministic feature maps can be constructed, for any $\gamma 0$, to achieve error $\epsilon$ with $O(e {e \gamma} \epsilon {-1/\gamma})$ samples as $\epsilon$ goes to 0. Our method works particularly well with sparse ANOVA kernels, which are inspired by the convolutional layer of CNNs. We validate our methods on datasets in different domains, such as MNIST and TIMIT, showing that deterministic features are faster to generate and achieve accuracy comparable to the state-of-the-art kernel methods based on random Fourier features.


Gaussian Quadrature for Kernel Features

Neural Information Processing Systems

Kernel methods have recently attracted resurgent interest, showing performance competitive with deep neural networks in tasks such as speech recognition. The random Fourier features map is a technique commonly used to scale up kernel machines, but employing the randomized feature map means that $O(\epsilon^{-2})$ samples are required to achieve an approximation error of at most $\epsilon$. We investigate some alternative schemes for constructing feature maps that are deterministic, rather than random, by approximating the kernel in the frequency domain using Gaussian quadrature. We show that deterministic feature maps can be constructed, for any $\gamma > 0$, to achieve error $\epsilon$ with $O(e^{e^\gamma} + \epsilon^{-1/\gamma})$ samples as $\epsilon$ goes to 0. Our method works particularly well with sparse ANOVA kernels, which are inspired by the convolutional layer of CNNs. We validate our methods on datasets in different domains, such as MNIST and TIMIT, showing that deterministic features are faster to generate and achieve accuracy comparable to the state-of-the-art kernel methods based on random Fourier features.


Data Programming: Creating Large Training Sets, Quickly

Neural Information Processing Systems

Large labeled training sets are the critical building blocks of supervised learning methods and are key enablers of deep learning techniques. For some applications, creating labeled training sets is the most time-consuming and expensive part of applying machine learning. We therefore propose a paradigm for the programmatic creation of training sets called data programming in which users provide a set of labeling functions, which are programs that heuristically label subsets of the data, but that are noisy and may conflict. By viewing these labeling functions as implicitly describing a generative model for this noise, we show that we can recover the parameters of this model to "denoise" the generated training set, and establish theoretically that we can recover the parameters of these generative models in a handful of settings. We then show how to modify a discriminative loss function to make it noise-aware, and demonstrate our method over a range of discriminative models including logistic regression and LSTMs. Experimentally, on the 2014 TAC-KBP Slot Filling challenge, we show that data programming would have led to a new winning score, and also show that applying data programming to an LSTM model leads to a TAC-KBP score almost 6 F1 points over a state-of-the-art LSTM baseline (and into second place in the competition). Additionally, in initial user studies we observed that data programming may be an easier way for non-experts to create machine learning models when training data is limited or unavailable.


Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much

Neural Information Processing Systems

Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.


Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width

Neural Information Processing Systems

Gibbs sampling on factor graphs is a widely used inference technique, which often produces good empirical results. Theoretical guarantees for its performance are weak: even for tree structured graphs, the mixing time of Gibbs may be exponential in the number of variables. To help understand the behavior of Gibbs sampling, we introduce a new (hyper)graph property, called hierarchy width. We show that under suitable conditions on the weights, bounded hierarchy width ensures polynomial mixing time. Our study of hierarchy width is in part motivated by a class of factor graph templates, hierarchical templates, which have bounded hierarchy width—regardless of the data used to instantiate them. We demonstrate a rich application from natural language processing in which Gibbs sampling provably mixes rapidly and achieves accuracy that exceeds human volunteers.


Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms

Neural Information Processing Systems

Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we useour new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.