Goto

Collaborating Authors

 Ruzicka, Laurenz


TipSegNet: Fingertip Segmentation in Contactless Fingerprint Imaging

arXiv.org Artificial Intelligence

Contactless fingerprint recognition systems offer a hygienic, user-friendly, and efficient alternative to traditional contact-based methods. However, their accuracy heavily relies on precise fingertip detection and segmentation, particularly under challenging background conditions. This paper introduces TipSegNet, a novel deep learning model that achieves state-of-the-art performance in segmenting fingertips directly from grayscale hand images. TipSegNet leverages a ResNeXt-101 backbone for robust feature extraction, combined with a Feature Pyramid Network (FPN) for multi-scale representation, enabling accurate segmentation across varying finger poses and image qualities. Furthermore, we employ an extensive data augmentation strategy to enhance the model's generalizability and robustness. TipSegNet outperforms existing methods, achieving a mean Intersection over Union (mIoU) of 0.987 and an accuracy of 0.999, representing a significant advancement in contactless fingerprint segmentation. This enhanced accuracy has the potential to substantially improve the reliability and effectiveness of contactless biometric systems in real-world applications.


Towards Fingerprint Mosaicking Artifact Detection: A Self-Supervised Deep Learning Approach

arXiv.org Artificial Intelligence

Fingerprint mosaicking, which is the process of combining multiple fingerprint images into a single master fingerprint, is an essential process in modern biometric systems. However, it is prone to errors that can significantly degrade fingerprint image quality. This paper proposes a novel deep learning-based approach to detect and score mosaicking artifacts in fingerprint images. Our method leverages a self-supervised learning framework to train a model on large-scale unlabeled fingerprint data, eliminating the need for manual artifact annotation. The proposed model effectively identifies mosaicking errors, achieving high accuracy on various fingerprint modalities, including contactless, rolled, and pressed fingerprints and furthermore proves to be robust to different data sources. Additionally, we introduce a novel mosaicking artifact score to quantify the severity of errors, enabling automated evaluation of fingerprint images. By addressing the challenges of mosaicking artifact detection, our work contributes to improving the accuracy and reliability of fingerprint-based biometric systems.