Russo, Fabrizio
Argumentative Causal Discovery
Russo, Fabrizio, Rapberger, Anna, Toni, Francesca
Causal discovery amounts to unearthing causal relationships amongst features in data. It is a crucial companion to causal inference, necessary to build scientific knowledge without resorting to expensive or impossible randomised control trials. In this paper, we explore how reasoning with symbolic representations can support causal discovery. Specifically, we deploy assumption-based argumentation (ABA), a well-established and powerful knowledge representation formalism, in combination with causality theories, to learn graphs which reflect causal dependencies in the data. We prove that our method exhibits desirable properties, notably that, under natural conditions, it can retrieve ground-truth causal graphs. We also conduct experiments with an implementation of our method in answer set programming (ASP) on four datasets from standard benchmarks in causal discovery, showing that our method compares well against established baselines.
Contestable AI needs Computational Argumentation
Leofante, Francesco, Ayoobi, Hamed, Dejl, Adam, Freedman, Gabriel, Gorur, Deniz, Jiang, Junqi, Paulino-Passos, Guilherme, Rago, Antonio, Rapberger, Anna, Russo, Fabrizio, Yin, Xiang, Zhang, Dekai, Toni, Francesca
AI has become pervasive in recent years, but state-of-the-art approaches predominantly neglect the need for AI systems to be contestable. Instead, contestability is advocated by AI guidelines (e.g. by the OECD) and regulation of automated decision-making (e.g. GDPR). In this position paper we explore how contestability can be achieved computationally in and for AI. We argue that contestable AI requires dynamic (human-machine and/or machine-machine) explainability and decision-making processes, whereby machines can (i) interact with humans and/or other machines to progressively explain their outputs and/or their reasoning as well as assess grounds for contestation provided by these humans and/or other machines, and (ii) revise their decision-making processes to redress any issues successfully raised during contestation. Given that much of the current AI landscape is tailored to static AIs, the need to accommodate contestability will require a radical rethinking, that, we argue, computational argumentation is ideally suited to support.
Online Handbook of Argumentation for AI: Volume 4
Bengel, Lars, Blรผmel, Lydia, Bezou-Vrakatseli, Elfia, Castagna, Federico, D'Agostino, Giulia, Kuhlmann, Isabelle, Mumford, Jack, Odekerken, Daphne, Russo, Fabrizio, Sarkadi, Stefan, Waller, Madeleine, Xydis, Andreas
This volume contains revised versions of the papers selected for the fourth volume of the Online Handbook of Argumentation for AI (OHAAI). Previously, formal theories of argument and argument interaction have been proposed and studied, and this has led to the more recent study of computational models of argument. Argumentation, as a field within artificial intelligence (AI), is highly relevant for researchers interested in symbolic representations of knowledge and defeasible reasoning. The purpose of this handbook is to provide an open access and curated anthology for the argumentation research community. OHAAI is designed to serve as a research hub to keep track of the latest and upcoming PhD-driven research on the theory and application of argumentation in all areas related to AI.
Shapley-PC: Constraint-based Causal Structure Learning with Shapley Values
Russo, Fabrizio, Toni, Francesca
Causal Structure Learning (CSL), amounting to extracting causal relations among the variables in a dataset, is widely perceived as an important step towards robust and transparent models. Constraint-based CSL leverages conditional independence tests to perform causal discovery. We propose Shapley-PC, a novel method to improve constraint-based CSL algorithms by using Shapley values over the possible conditioning sets to decide which variables are responsible for the observed conditional (in)dependences. We prove soundness and asymptotic consistency and demonstrate that it can outperform state-of-the-art constraint-based, search-based and functional causal model-based methods, according to standard metrics in CSL.
Causal Discovery and Knowledge Injection for Contestable Neural Networks (with Appendices)
Russo, Fabrizio, Toni, Francesca
Neural networks have proven to be effective at solving machine learning tasks but it is unclear whether they learn any relevant causal relationships, while their black-box nature makes it difficult for modellers to understand and debug them. We propose a novel method overcoming these issues by allowing a two-way interaction whereby neural-network-empowered machines can expose the underpinning learnt causal graphs and humans can contest the machines by modifying the causal graphs before re-injecting them into the machines. The learnt models are guaranteed to conform to the graphs and adhere to expert knowledge, some of which can also be given up-front. By building a window into the model behaviour and enabling knowledge injection, our method allows practitioners to debug networks based on the causal structure discovered from the data and underpinning the predictions. Experiments with real and synthetic tabular data show that our method improves predictive performance up to 2.4x while producing parsimonious networks, up to 7x smaller in the input layer, compared to SOTA regularised networks.