Runkler, Thomas
Is Q-learning an Ill-posed Problem?
Wissmann, Philipp, Hein, Daniel, Udluft, Steffen, Runkler, Thomas
This paper investigates the instability of Q-learning in continuous environments, a challenge frequently encountered by practitioners. Traditionally, this instability is attributed to bootstrapping and regression model errors. Using a representative reinforcement learning benchmark, we systematically examine the effects of bootstrapping and model inaccuracies by incrementally eliminating these potential error sources. Our findings reveal that even in relatively simple benchmarks, the fundamental task of Q-learning - iteratively learning a Q-function from policy-specific target values - can be inherently ill-posed and prone to failure. These insights cast doubt on the reliability of Q-learning as a universal solution for reinforcement learning problems.
Conceptual In-Context Learning and Chain of Concepts: Solving Complex Conceptual Problems Using Large Language Models
Vaidya, Nishtha N., Runkler, Thomas, Hubauer, Thomas, Haderlein-Hoegberg, Veronika, Brandt, Maja Mlicic
Science and engineering problems fall in the category of complex conceptual problems that require specific conceptual information (CI) like math/logic -related know-how, process information, or engineering guidelines to solve them. Large Language Models (LLMs) are promising agents to solve such complex conceptual problems due to their implications in advancing engineering and science tasks like assisted problem-solving. But vanilla LLMs, trained on open-world data, lack the necessary CI. In this work, we specifically explore shallow customization methods (SCMs) of LLMs for solving complex conceptual problems. We propose two novel SCM algorithms for LLM, to augment LLMs with CI and enable LLMs to solve complex conceptual problems: Conceptual In-Context Learning (C-ICL) and Chain of Concepts (CoC). The problem tackled in this paper is generation of proprietary data models in the engineering/industry domain based on conceptual information in data modelling guidelines. We evaluate our algorithms on varied sizes of the OpenAI LLMs against four evaluation metrics related to syntactic and semantic correctness, time and cost incurred. The proposed algorithms perform better than currently popular LLM SCMs like In-context Learning (ICL) and Chain of Thoughts (CoT). It was observed that as compared to CoT, response correctness increased by 30.6% and 29.88% for the new SCMs C-ICL and CoC respectively. Qualitative analysis suggests that the proposed new SCMs activate emergent capabilities in LLMs, previously unobserved in the existing SCMs. They make problem-solving processes more transparent and reduce hallucinations and the tendency of model responses to copy examples from prompts (parroting).
FsPONER: Few-shot Prompt Optimization for Named Entity Recognition in Domain-specific Scenarios
Tang, Yongjian, Hasan, Rakebul, Runkler, Thomas
Large Language Models (LLMs) have provided a new pathway for Named Entity Recognition (NER) tasks. Compared with fine-tuning, LLM-powered prompting methods avoid the need for training, conserve substantial computational resources, and rely on minimal annotated data. Previous studies have achieved comparable performance to fully supervised BERT-based fine-tuning approaches on general NER benchmarks. However, none of the previous approaches has investigated the efficiency of LLM-based few-shot learning in domain-specific scenarios. To address this gap, we introduce FsPONER, a novel approach for optimizing few-shot prompts, and evaluate its performance on domain-specific NER datasets, with a focus on industrial manufacturing and maintenance, while using multiple LLMs -- GPT-4-32K, GPT-3.5-Turbo, LLaMA 2-chat, and Vicuna. FsPONER consists of three few-shot selection methods based on random sampling, TF-IDF vectors, and a combination of both. We compare these methods with a general-purpose GPT-NER method as the number of few-shot examples increases and evaluate their optimal NER performance against fine-tuned BERT and LLaMA 2-chat. In the considered real-world scenarios with data scarcity, FsPONER with TF-IDF surpasses fine-tuned models by approximately 10% in F1 score.
Fusion of Domain-Adapted Vision and Language Models for Medical Visual Question Answering
Ha, Cuong Nhat, Asaadi, Shima, Karn, Sanjeev Kumar, Farri, Oladimeji, Heimann, Tobias, Runkler, Thomas
Vision-language models, while effective in general domains and showing strong performance in diverse multi-modal applications like visual question-answering (VQA), struggle to maintain the same level of effectiveness in more specialized domains, e.g., medical. We propose a medical vision-language model that integrates large vision and language models adapted for the medical domain. This model goes through three stages of parameter-efficient training using three separate biomedical and radiology multi-modal visual and text datasets. The proposed model achieves state-of-the-art performance on the SLAKE 1.0 medical VQA (MedVQA) dataset with an overall accuracy of 87.5% and demonstrates strong performance on another MedVQA dataset, VQA-RAD, achieving an overall accuracy of 73.2%.
Wiki-TabNER:Advancing Table Interpretation Through Named Entity Recognition
Koleva, Aneta, Ringsquandl, Martin, Hatem, Ahmed, Runkler, Thomas, Tresp, Volker
Web tables contain a large amount of valuable knowledge and have inspired tabular language models aimed at tackling table interpretation (TI) tasks. In this paper, we analyse a widely used benchmark dataset for evaluation of TI tasks, particularly focusing on the entity linking task. Our analysis reveals that this dataset is overly simplified, potentially reducing its effectiveness for thorough evaluation and failing to accurately represent tables as they appear in the real-world. To overcome this drawback, we construct and annotate a new more challenging dataset. In addition to introducing the new dataset, we also introduce a novel problem aimed at addressing the entity linking task: named entity recognition within cells. Finally, we propose a prompting framework for evaluating the newly developed large language models (LLMs) on this novel TI task. We conduct experiments on prompting LLMs under various settings, where we use both random and similarity-based selection to choose the examples presented to the models. Our ablation study helps us gain insights into the impact of the few-shot examples. Additionally, we perform qualitative analysis to gain insights into the challenges encountered by the models and to understand the limitations of the proposed dataset.
Neural Topic Modeling with Continual Lifelong Learning
Gupta, Pankaj, Chaudhary, Yatin, Runkler, Thomas, Schütze, Hinrich
Lifelong learning has recently attracted attention in building machine learning systems that continually accumulate and transfer knowledge to help future learning. Unsupervised topic modeling has been popularly used to discover topics from document collections. However, the application of topic modeling is challenging due to data sparsity, e.g., in a small collection of (short) documents and thus, generate incoherent topics and sub-optimal document representations. To address the problem, we propose a lifelong learning framework for neural topic modeling that can continuously process streams of document collections, accumulate topics and guide future topic modeling tasks by knowledge transfer from several sources to better deal with the sparse data. In the lifelong process, we particularly investigate jointly: (1) sharing generative homologies (latent topics) over lifetime to transfer prior knowledge, and (2) minimizing catastrophic forgetting to retain the past learning via novel selective data augmentation, co-training and topic regularization approaches. Given a stream of document collections, we apply the proposed Lifelong Neural Topic Modeling (LNTM) framework in modeling three sparse document collections as future tasks and demonstrate improved performance quantified by perplexity, topic coherence and information retrieval task.
Automatic Trade-off Adaptation in Offline RL
Swazinna, Phillip, Udluft, Steffen, Runkler, Thomas
Recently, offline RL algorithms have been proposed that remain adaptive at runtime. For example, the LION algorithm \cite{lion} provides the user with an interface to set the trade-off between behavior cloning and optimality w.r.t. the estimated return at runtime. Experts can then use this interface to adapt the policy behavior according to their preferences and find a good trade-off between conservatism and performance optimization. Since expert time is precious, we extend the methodology with an autopilot that automatically finds the correct parameterization of the trade-off, yielding a new algorithm which we term AutoLION.
User-Interactive Offline Reinforcement Learning
Swazinna, Phillip, Udluft, Steffen, Runkler, Thomas
Offline reinforcement learning algorithms still lack trust in practice due to the risk that the learned policy performs worse than the original policy that generated the dataset or behaves in an unexpected way that is unfamiliar to the user. At the same time, offline RL algorithms are not able to tune their most important hyperparameter - the proximity of the learned policy to the original policy. We propose an algorithm that allows the user to tune this hyperparameter at runtime, thereby addressing both of the above mentioned issues simultaneously. This allows users to start with the original behavior and grant successively greater deviation, as well as stopping at any time when the policy deteriorates or the behavior is too far from the familiar one.
Detection, Explanation and Filtering of Cyber Attacks Combining Symbolic and Sub-Symbolic Methods
Himmelhuber, Anna, Dold, Dominik, Grimm, Stephan, Zillner, Sonja, Runkler, Thomas
Machine learning (ML) on graph-structured data has recently received deepened interest in the context of intrusion detection in the cybersecurity domain. Due to the increasing amounts of data generated by monitoring tools as well as more and more sophisticated attacks, these ML methods are gaining traction. Knowledge graphs and their corresponding learning techniques such as Graph Neural Networks (GNNs) with their ability to seamlessly integrate data from multiple domains using human-understandable vocabularies, are finding application in the cybersecurity domain. However, similar to other connectionist models, GNNs are lacking transparency in their decision making. This is especially important as there tend to be a high number of false positive alerts in the cybersecurity domain, such that triage needs to be done by domain experts, requiring a lot of man power. Therefore, we are addressing Explainable AI (XAI) for GNNs to enhance trust management by exploring combining symbolic and sub-symbolic methods in the area of cybersecurity that incorporate domain knowledge. We experimented with this approach by generating explanations in an industrial demonstrator system. The proposed method is shown to produce intuitive explanations for alerts for a diverse range of scenarios. Not only do the explanations provide deeper insights into the alerts, but they also lead to a reduction of false positive alerts by 66% and by 93% when including the fidelity metric.
Towards Data-Free Domain Generalization
Frikha, Ahmed, Chen, Haokun, Krompaß, Denis, Runkler, Thomas, Tresp, Volker
In this work, we investigate the unexplored intersection of domain generalization (DG) and data-free learning. In particular, we address the question: How can knowledge contained in models trained on different source domains be merged into a single model that generalizes well to unseen target domains, in the absence of source and target domain data? Machine learning models that can cope with domain shift are essential for real-world scenarios with often changing data distributions. Prior DG methods typically rely on using source domain data, making them unsuitable for private decentralized data. We define the novel problem of Data-Free Domain Generalization (DFDG), a practical setting where models trained on the source domains separately are available instead of the original datasets, and investigate how to effectively solve the domain generalization problem in that case. We propose DEKAN, an approach that extracts and fuses domain-specific knowledge from the available teacher models into a student model robust to domain shift. Our empirical evaluation demonstrates the effectiveness of our method which achieves first state-of-the-art results in DFDG by significantly outperforming data-free knowledge distillation and ensemble baselines.