Goto

Collaborating Authors

 Rumetshofer, Elisabeth


Contrastive Abstraction for Reinforcement Learning

arXiv.org Artificial Intelligence

Learning agents with reinforcement learning is difficult when dealing with long trajectories that involve a large number of states. To address these learning problems effectively, the number of states can be reduced by abstract representations that cluster states. In principle, deep reinforcement learning can find abstract states, but end-to-end learning is unstable. We propose contrastive abstraction learning to find abstract states, where we assume that successive states in a trajectory belong to the same abstract state. Such abstract states may be basic locations, achieved subgoals, inventory, or health conditions. Contrastive abstraction learning first constructs clusters of state representations by contrastive learning and then applies modern Hopfield networks to determine the abstract states. The first phase of contrastive abstraction learning is self-supervised learning, where contrastive learning forces states with sequential proximity to have similar representations. The second phase uses modern Hopfield networks to map similar state representations to the same fixed point, i.e.\ to an abstract state. The level of abstraction can be adjusted by determining the number of fixed points of the modern Hopfield network. Furthermore, \textit{contrastive abstraction learning} does not require rewards and facilitates efficient reinforcement learning for a wide range of downstream tasks. Our experiments demonstrate the effectiveness of contrastive abstraction learning for reinforcement learning.


Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget

arXiv.org Artificial Intelligence

Masked Image Modeling (MIM) methods, like Masked Autoencoders (MAE), efficiently learn a rich representation of the input. However, for adapting to downstream tasks, they require a sufficient amount of labeled data since their rich features code not only objects but also less relevant image background. In contrast, Instance Discrimination (ID) methods focus on objects. In this work, we study how to combine the efficiency and scalability of MIM with the ability of ID to perform downstream classification in the absence of large amounts of labeled data. To this end, we introduce Masked Autoencoder Contrastive Tuning (MAE-CT), a sequential approach that utilizes the implicit clustering of the Nearest Neighbor Contrastive Learning (NNCLR) objective to induce abstraction in the topmost layers of a pre-trained MAE. MAE-CT tunes the rich features such that they form semantic clusters of objects without using any labels. Notably, MAE-CT does not rely on hand-crafted augmentations and frequently achieves its best performances while using only minimal augmentations (crop & flip). Further, MAE-CT is compute efficient as it requires at most 10% overhead compared to MAE re-training. Applied to large and huge Vision Transformer (ViT) models, MAE-CT excels over previous self-supervised methods trained on ImageNet in linear probing, k-NN and low-shot classification accuracy as well as in unsupervised clustering accuracy. With ViT-H/16 MAE-CT achieves a new state-of-the-art in linear probing of 82.2%.