Ruiz, Francisco
Can a Tabula Recta provide security in the XXI century?
Ruiz, Francisco
In the not so unlikely scenario of total compromise of computers accessible to a group of users, they might be tempted to resort to human-computable paper-and-pencil cryptographic methods aided by a classic Tabula Recta, which helps to perform addition and subtraction directly with letters. But do these classic algorithms, or some new ones using the same simple tools, have any chance against computer-aided cryptanalysis? In this paper I discuss how some human-computable algorithms can indeed afford sufficient security in this situation, drawing conclusions from computer-based statistical analysis. Three kinds of algorithms are discussed: those that concentrate entropy from shared text sources, stream ciphers based on arithmetic of non-binary spaces, and hash-like algorithms that may be used to generate a password from a challenge text.
Estimating Heterogeneous Consumer Preferences for Restaurants and Travel Time Using Mobile Location Data
Athey, Susan, Blei, David, Donnelly, Robert, Ruiz, Francisco, Schmidt, Tobias
This paper analyzes consumer choices over lunchtime restaurants using data from a sample of several thousand anonymous mobile phone users in the San Francisco Bay Area. The data is used to identify users' approximate typical morning location, as well as their choices of lunchtime restaurants. We build a model where restaurants have latent characteristics (whose distribution may depend on restaurant observables, such as star ratings, food category, and price range), each user has preferences for these latent characteristics, and these preferences are heterogeneous across users. Similarly, each item has latent characteristics that describe users' willingness to travel to the restaurant, and each user has individual-specific preferences for those latent characteristics. Thus, both users' willingness to travel and their base utility for each restaurant vary across user-restaurant pairs. We use a Bayesian approach to estimation. To make the estimation computationally feasible, we rely on variational inference to approximate the posterior distribution, as well as stochastic gradient descent as a computational approach. Our model performs better than more standard competing models such as multinomial logit and nested logit models, in part due to the personalization of the estimates. We analyze how consumers re-allocate their demand after a restaurant closes to nearby restaurants versus more distant restaurants with similar characteristics, and we compare our predictions to actual outcomes. Finally, we show how the model can be used to analyze counterfactual questions such as what type of restaurant would attract the most consumers in a given location.
Structured Embedding Models for Grouped Data
Rudolph, Maja, Ruiz, Francisco, Athey, Susan, Blei, David
Word embeddings are a powerful approach for analyzing language, and exponential family embeddings (EFE) extend them to other types of data. Here we develop structured exponential family embeddings (S-EFE), a method for discovering embeddings that vary across related groups of data. We study how the word usage of U.S. Congressional speeches varies across states and party affiliation, how words are used differently across sections of the ArXiv, and how the co-purchase patterns of groceries can vary across seasons. Key to the success of our method is that the groups share statistical information. We develop two sharing strategies: hierarchical modeling and amortization. We demonstrate the benefits of this approach in empirical studies of speeches, abstracts, and shopping baskets. We show how SEFE enables group-specific interpretation of word usage, and outperforms EFE in predicting held-out data.
Context Selection for Embedding Models
Liu, Liping, Ruiz, Francisco, Athey, Susan, Blei, David
Word embeddings are an effective tool to analyze language. They have been recently extended to model other types of data beyond text, such as items in recommendation systems. Embedding models consider the probability of a target observation (a word or an item) conditioned on the elements in the context (other words or items). In this paper, we show that conditioning on all the elements in the context is not optimal. Instead, we model the probability of the target conditioned on a learned subset of the elements in the context. We use amortized variational inference to automatically choose this subset. Compared to standard embedding models, this method improves predictions and the quality of the embeddings.
Structured Embedding Models for Grouped Data
Rudolph, Maja, Ruiz, Francisco, Athey, Susan, Blei, David
Word embeddings are a powerful approach for analyzing language, and exponential family embeddings (EFE) extend them to other types of data. Here we develop structured exponential family embeddings (S-EFE), a method for discovering embeddings that vary across related groups of data. We study how the word usage of U.S. Congressional speeches varies across states and party affiliation, how words are used differently across sections of the ArXiv, and how the co-purchase patterns of groceries can vary across seasons. Key to the success of our method is that the groups share statistical information. We develop two sharing strategies: hierarchical modeling and amortization. We demonstrate the benefits of this approach in empirical studies of speeches, abstracts, and shopping baskets. We show how S-EFE enables group-specific interpretation of word usage, and outperforms EFE in predicting held-out data.
Exponential Family Embeddings
Rudolph, Maja, Ruiz, Francisco, Mandt, Stephan, Blei, David
Word embeddings are a powerful approach to capturing semantic similarity among terms in a vocabulary. In this paper, we develop exponential family embeddings, which extends the idea of word embeddings to other types of high-dimensional data. As examples, we studied several types of data: neural data with real-valued observations, count data from a market basket analysis, and ratings data from a movie recommendation system. The main idea is that each observation is modeled conditioned on a set of latent embeddings and other observations, called the context, where the way the context is defined depends on the problem. In language the context is the surrounding words; in neuroscience the context is close-by neurons; in market basket data the context is other items in the shopping cart. Each instance of an embedding defines the context, the exponential family of conditional distributions, and how the embedding vectors are shared across data. We infer the embeddings with stochastic gradient descent, with an algorithm that connects closely to generalized linear models. On all three of our applications—neural activity of zebrafish, users’ shopping behavior, and movie ratings—we found that exponential family embedding models are more effective than other dimension reduction methods. They better reconstruct held-out data and find interesting qualitative structure.
Infinite Factorial Dynamical Model
Valera, Isabel, Ruiz, Francisco, Svensson, Lennart, Perez-Cruz, Fernando
We propose the infinite factorial dynamic model (iFDM), a general Bayesian nonparametric model for source separation. Our model builds on the Markov Indian buffet process to consider a potentially unbounded number of hidden Markov chains (sources) that evolve independently according to some dynamics, in which the state space can be either discrete or continuous. For posterior inference, we develop an algorithm based on particle Gibbs with ancestor sampling that can be efficiently applied to a wide range of source separation problems. We evaluate the performance of our iFDM on four well-known applications: multitarget tracking, cocktail party, power disaggregation, and multiuser detection. Our experimental results show that our approach for source separation does not only outperform previous approaches, but it can also handle problems that were computationally intractable for existing approaches.
Bayesian Nonparametric Modeling of Suicide Attempts
Ruiz, Francisco, Valera, Isabel, Blanco, Carlos, Pérez-Cruz, Fernando
The National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) database contains a large amount of information, regarding the way of life, medical conditions, depression, etc., of a representative sample of the U.S. population. In the present paper, we are interested in seeking the hidden causes behind the suicide attempts, for which we propose to model the subjects using a nonparametric latent model based on the Indian Buffet Process (IBP). Due to the nature of the data, we need to adapt the observation model for discrete random variables. We propose a generative model in which the observations are drawn from a multinomial-logit distribution given the IBP matrix. The implementation of an efficient Gibbs sampler is accomplished using the Laplace approximation, which allows us to integrate out the weighting factors of the multinomial-logit likelihood model. Finally, the experiments over the NESARC database show that our model properly captures some of the hidden causes that model suicide attempts.