Goto

Collaborating Authors

 Ruitong Huang



Maximum Entropy Monte-Carlo Planning

Neural Information Processing Systems

We develop a new algorithm for online planning in large scale sequential decision problems that improves upon the worst case efficiency of UCT. The idea is to augment Monte-Carlo Tree Search (MCTS) with maximum entropy policy optimization, evaluating each search node by softmax values back-propagated from simulation. To establish the effectiveness of this approach, we first investigate the single-step decision problem, stochastic softmax bandits, and show that softmax values can be estimated at an optimal convergence rate in terms of mean squared error. We then extend this approach to general sequential decision making by developing a general MCTS algorithm, Maximum Entropy for Tree Search (MENTS). We prove that the probability of MENTS failing to identify the best decision at the root decays exponentially, which fundamentally improves the polynomial convergence rate of UCT. Our experimental results also demonstrate that MENTS is more sample efficient than UCT in both synthetic problems and Atari 2600 games.


Following the Leader and Fast Rates in Linear Prediction: Curved Constraint Sets and Other Regularities

Neural Information Processing Systems

The follow the leader (FTL) algorithm, perhaps the simplest of all online learning algorithms, is known to perform well when the loss functions it is used on are positively curved. In this paper we ask whether there are other "lucky" settings when FTL achieves sublinear, "small" regret. In particular, we study the fundamental problem of linear prediction over a non-empty convex, compact domain. Amongst other results, we prove that the curvature of the boundary of the domain can act as if the losses were curved: In this case, we prove that as long as the mean of the loss vectors have positive lengths bounded away from zero, FTL enjoys a logarithmic growth rate of regret, while, e.g., for polyhedral domains and stochastic data it enjoys finite expected regret. Building on a previously known meta-algorithm, we also get an algorithm that simultaneously enjoys the worst-case guarantees and the bound available for FTL.