Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Ruidi Chen
Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression
Ruidi Chen, Ioannis Paschalidis
This paper develops a prediction-based prescriptive model for optimal decision making that (i) predicts the outcome under each action using a robust nonlinear model, and (ii) adopts a randomized prescriptive policy determined by the predicted outcomes. The predictive model combines a new regularized regression technique, which was developed using Distributionally Robust Optimization (DRO) with an ambiguity set constructed from the Wasserstein metric, with the K-Nearest Neighbors (K-NN) regression, which helps to capture the nonlinearity embedded in the data. We show theoretical results that guarantee the out-of-sample performance of the predictive model, and prove the optimality of the randomized policy in terms of the expected true future outcome. We demonstrate the proposed methodology on a hypertension dataset, showing that our prescribed treatment leads to a larger reduction in the systolic blood pressure compared to a series of alternatives. A clinically meaningful threshold level used to activate the randomized policy is also derived under a sub-Gaussian assumption on the predicted outcome.
Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression
Ruidi Chen, Ioannis Paschalidis
This paper develops a prediction-based prescriptive model for optimal decision making that (i) predicts the outcome under each action using a robust nonlinear model, and (ii) adopts a randomized prescriptive policy determined by the predicted outcomes. The predictive model combines a new regularized regression technique, which was developed using Distributionally Robust Optimization (DRO) with an ambiguity set constructed from the Wasserstein metric, with the K-Nearest Neighbors (K-NN) regression, which helps to capture the nonlinearity embedded in the data. We show theoretical results that guarantee the out-of-sample performance of the predictive model, and prove the optimality of the randomized policy in terms of the expected true future outcome. We demonstrate the proposed methodology on a hypertension dataset, showing that our prescribed treatment leads to a larger reduction in the systolic blood pressure compared to a series of alternatives. A clinically meaningful threshold level used to activate the randomized policy is also derived under a sub-Gaussian assumption on the predicted outcome.