Goto

Collaborating Authors

 Rubachev, Ivan


TabReD: A Benchmark of Tabular Machine Learning in-the-Wild

arXiv.org Artificial Intelligence

Benchmarks that closely reflect downstream application scenarios are essential for the streamlined adoption of new research in tabular machine learning (ML). In this work, we examine existing tabular benchmarks and find two common characteristics of industry-grade tabular data that are underrepresented in the datasets available to the academic community. First, tabular data often changes over time in real-world deployment scenarios. This impacts model performance and requires time-based train and test splits for correct model evaluation. Yet, existing academic tabular datasets often lack timestamp metadata to enable such evaluation. Second, a considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines. For each specific dataset, this can have a different impact on the absolute and relative number of predictive, uninformative, and correlated features, which in turn can affect model selection. To fill the aforementioned gaps in academic benchmarks, we introduce TabReD -- a collection of eight industry-grade tabular datasets covering a wide range of domains from finance to food delivery services. We assess a large number of tabular ML models in the feature-rich, temporally-evolving data setting facilitated by TabReD. We demonstrate that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits more common in academic benchmarks. Furthermore, on the TabReD datasets, MLP-like architectures and GBDT show the best results, while more sophisticated DL models are yet to prove their effectiveness.


Revisiting Deep Learning Models for Tabular Data

arXiv.org Artificial Intelligence

The existing literature on deep learning for tabular data proposes a wide range of novel architectures and reports competitive results on various datasets. However, the proposed models are usually not properly compared to each other and existing works often use different benchmarks and experiment protocols. As a result, it is unclear for both researchers and practitioners what models perform best. Additionally, the field still lacks effective baselines, that is, the easy-to-use models that provide competitive performance across different problems. In this work, we perform an overview of the main families of DL architectures for tabular data and raise the bar of baselines in tabular DL by identifying two simple and powerful deep architectures. The first one is a ResNet-like architecture which turns out to be a strong baseline that is often missing in prior works. The second model is our simple adaptation of the Transformer architecture for tabular data, which outperforms other solutions on most tasks. Both models are compared to many existing architectures on a diverse set of tasks under the same training and tuning protocols. We also compare the best DL models with Gradient Boosted Decision Trees and conclude that there is still no universally superior solution.


On Embeddings for Numerical Features in Tabular Deep Learning

arXiv.org Artificial Intelligence

Recently, Transformer-like deep architectures have shown strong performance on tabular data problems. Unlike traditional models, e.g., MLP, these architectures map scalar values of numerical features to high-dimensional embeddings before mixing them in the main backbone. In this work, we argue that embeddings for numerical features are an underexplored degree of freedom in tabular DL, which allows constructing more powerful DL models and competing with GBDT on some traditionally GBDT-friendly benchmarks. We start by describing two conceptually different approaches to building embedding modules: the first one is based on a piecewise linear encoding of scalar values, and the second one utilizes periodic activations. Then, we empirically demonstrate that these two approaches can lead to significant performance boosts compared to the embeddings based on conventional blocks such as linear layers and ReLU activations. Importantly, we also show that embedding numerical features is beneficial for many backbones, not only for Transformers. Specifically, after proper embeddings, simple MLP-like models can perform on par with the attention-based architectures. Overall, we highlight embeddings for numerical features as an important design aspect with good potential for further improvements in tabular DL.


TabR: Tabular Deep Learning Meets Nearest Neighbors in 2023

arXiv.org Artificial Intelligence

Deep learning (DL) models for tabular data problems (e.g. classification, regression) are currently receiving increasingly more attention from researchers. However, despite the recent efforts, the non-DL algorithms based on gradient-boosted decision trees (GBDT) remain a strong go-to solution for these problems. One of the research directions aimed at improving the position of tabular DL involves designing so-called retrieval-augmented models. For a target object, such models retrieve other objects (e.g. the nearest neighbors) from the available training data and use their features and labels to make a better prediction. In this work, we present TabR -- essentially, a feed-forward network with a custom k-Nearest-Neighbors-like component in the middle. On a set of public benchmarks with datasets up to several million objects, TabR marks a big step forward for tabular DL: it demonstrates the best average performance among tabular DL models, becomes the new state-of-the-art on several datasets, and even outperforms GBDT models on the recently proposed "GBDT-friendly" benchmark (see Figure 1). Among the important findings and technical details powering TabR, the main ones lie in the attention-like mechanism that is responsible for retrieving the nearest neighbors and extracting valuable signal from them. In addition to the much higher performance, TabR is simple and significantly more efficient compared to prior retrieval-based tabular DL models.