Rrapaj, Ermal
Comprehensive Performance Modeling and System Design Insights for Foundation Models
Subramanian, Shashank, Rrapaj, Ermal, Harrington, Peter, Chheda, Smeet, Farrell, Steven, Austin, Brian, Williams, Samuel, Wright, Nicholas, Bhimji, Wahid
Generative AI, in particular large transformer models, are increasingly driving HPC system design in science and industry. We analyze performance characteristics of such transformer models and discuss their sensitivity to the transformer type, parallelization strategy, and HPC system features (accelerators and interconnects). We utilize a performance model that allows us to explore this complex design space and highlight its key components. We find that different transformer types demand different parallelism and system characteristics at different training regimes. Large Language Models are performant with 3D parallelism and amplify network needs only at pre-training scales with reduced dependence on accelerator capacity and bandwidth. On the other hand, long-sequence transformers, representative of scientific foundation models, place a more uniform dependence on network and capacity with necessary 4D parallelism. Our analysis emphasizes the need for closer performance modeling of different transformer types keeping system features in mind and demonstrates a path towards this. Our code is available as open-source.
Less is More! A slim architecture for optimal language translation
Herranz-Celotti, Luca, Rrapaj, Ermal
The softmax attention mechanism has emerged as a noteworthy development in the field of Artificial Intelligence research, building on the successes of Transformer-based architectures. However, their ever increasing sizes necessitate ever increasing computational memory, that limits their usage. We propose KgV, a sigmoid gating mechanism that, in conjunction with softmax attention, significantly boosts performance without increasing architecture size. To amend the size requirements, we leverage Tensor Chains to identify and prune the excess parameters. We find that such excess resides primarily within the embedding layer, and not in the output linear layer. To further improve embedding and significantly reduce parameters, we introduce H-SoftPOS, a hierarchical embedding layer which simultaneously enhances performance. Remarkably, on the WMT14 English-German validation set, our approach yields a threefold reduction in perplexity, surpassing the current state-of-the-art, while reducing parameter counts also by a factor of 3. When we further reduce the number of parameters up to sevenfold, we can still achieve a 21\% decrease in perplexity with respect to the baseline Transformer. To understand generalization capabilities, we conduct experiments on the 7 language pairs of the WMT17 dataset. Our method outperforms existing techniques in terms of test loss while simultaneously halving the number of parameters. Moreover, we observe a 70 times reduction in variance with respect to the prior state-of-the-art. In conclusion, our proposed method yields significant improvements in performance and much lower memory cost. We call the resulting architecture Anthe.