Rozner, Amit
Knowledge Editing in Language Models via Adapted Direct Preference Optimization
Rozner, Amit, Battash, Barak, Wolf, Lior, Lindenbaum, Ofir
Large Language Models (LLMs) can become outdated over time as they may lack updated world knowledge, leading to factual knowledge errors and gaps. Knowledge Editing (KE) aims to overcome this challenge using weight updates that do not require expensive retraining. We propose treating KE as an LLM alignment problem. Toward this goal, we introduce Knowledge Direct Preference Optimization (KDPO), a variation of the Direct Preference Optimization (DPO) that is more effective for knowledge modifications. Our method is based on an online approach that continually updates the knowledge stored in the model. We use the current knowledge as a negative sample and the new knowledge we want to introduce as a positive sample in a process called DPO. We also use teacher-forcing for negative sample generation and optimize using the positive sample, which helps maintain localized changes. We tested our KE method on various datasets and models, comparing it to several cutting-edge methods, with 100 and 500 sequential edits. Additionally, we conducted an ablation study comparing our method to the standard DPO approach. Our experimental results show that our modified DPO method allows for more refined KE, achieving similar or better performance compared to previous methods.
Obtaining Favorable Layouts for Multiple Object Generation
Battash, Barak, Rozner, Amit, Wolf, Lior, Lindenbaum, Ofir
Large-scale text-to-image models that can generate high-quality and diverse images based on textual prompts have shown remarkable success. These models aim ultimately to create complex scenes, and addressing the challenge of multi-subject generation is a critical step towards this goal. However, the existing state-of-the-art diffusion models face difficulty when generating images that involve multiple subjects. When presented with a prompt containing more than one subject, these models may omit some subjects or merge them together. To address this challenge, we propose a novel approach based on a guiding principle. We allow the diffusion model to initially propose a layout, and then we rearrange the layout grid. This is achieved by enforcing cross-attention maps (XAMs) to adhere to proposed masks and by migrating pixels from latent maps to new locations determined by us. We introduce new loss terms aimed at reducing XAM entropy for clearer spatial definition of subjects, reduce the overlap between XAMs, and ensure that XAMs align with their respective masks. We contrast our approach with several alternative methods and show that it more faithfully captures the desired concepts across a variety of text prompts.
Anomaly Detection with Variance Stabilized Density Estimation
Rozner, Amit, Battash, Barak, Li, Henry, Wolf, Lior, Lindenbaum, Ofir
Density estimation based anomaly detection schemes typically model anomalies as examples that reside in low-density regions. We propose a modified density estimation problem and demonstrate its effectiveness for anomaly detection. Specifically, we assume the density function of normal samples is uniform in some compact domain. This assumption implies the density function is more stable (with lower variance) around normal samples than anomalies. We first corroborate this assumption empirically using a wide range of real-world data. Then, we design a variance stabilized density estimation problem for maximizing the likelihood of the observed samples while minimizing the variance of the density around normal samples. We introduce an ensemble of autoregressive models to learn the variance stabilized distribution. Finally, we perform an extensive benchmark with 52 datasets demonstrating that our method leads to state-of-the-art results while alleviating the need for data-specific hyperparameter tuning.
Domain-Generalizable Multiple-Domain Clustering
Rozner, Amit, Battash, Barak, Wolf, Lior, Lindenbaum, Ofir
Accurately clustering high-dimensional measurements is vital for adequately analyzing scientific data. Deep learning machinery has remarkably improved clustering capabilities in recent years due to its ability to extract meaningful representations. In this work, we are given unlabeled samples from multiple source domains, and we aim to learn a shared classifier that assigns the examples to various clusters. Evaluation is done by using the classifier for predicting cluster assignments in a previously unseen domain. This setting generalizes the problem of unsupervised domain generalization to the case in which no supervised learning samples are given (completely unsupervised). Towards this goal, we present an end-to-end model and evaluate its capabilities on several multi-domain image datasets. Specifically, we demonstrate that our model is more accurate than schemes that require fine-tuning using samples from the target domain or some level of supervision.