Goto

Collaborating Authors

 Rozanov, Nikolai


IsoChronoMeter: A simple and effective isochronic translation evaluation metric

arXiv.org Artificial Intelligence

Machine translation (MT) has come a long way and is readily employed in production systems to serve millions of users daily. With the recent advances in generative AI, a new form of translation is becoming possible - video dubbing. This work motivates the importance of isochronic translation, especially in the context of automatic dubbing, and introduces `IsoChronoMeter' (ICM). ICM is a simple yet effective metric to measure isochrony of translations in a scalable and resource-efficient way without the need for gold data, based on state-of-the-art text-to-speech (TTS) duration predictors. We motivate IsoChronoMeter and demonstrate its effectiveness. Using ICM we demonstrate the shortcomings of state-of-the-art translation systems and show the need for new methods. We release the code at this URL: \url{https://github.com/braskai/isochronometer}.


StateAct: State Tracking and Reasoning for Acting and Planning with Large Language Models

arXiv.org Artificial Intelligence

Planning and acting to solve `real' tasks using large language models (LLMs) in interactive environments has become a new frontier for AI methods. While recent advances allowed LLMs to interact with online tools, solve robotics tasks and many more, long range reasoning tasks remain a problem for LLMs. Existing methods to address this issue are very resource intensive and require additional data or human crafted rules, instead, we propose a simple method based on few-shot in-context learning alone to enhance `chain-of-thought' with state-tracking for planning and acting with LLMs. We show that our method establishes the new state-of-the-art on Alfworld for in-context learning methods (\textbf{+14\%} over the previous best few-shot in-context learning method) and performs on par with methods that use additional training data and additional tools such as code-execution. We also demonstrate that our enhanced `chain-of-states' allows the agent to both solve longer horizon problems and to be more efficient in number of steps required to solve a task. We show that our method works across a variety of LLMs for both API-based and open source ones. Finally, we also conduct ablation studies and show that `chain-of-thoughts' helps state-tracking accuracy, while a json-structure harms overall performance. We open-source our code and annotations at \url{https://github.com/ai-nikolai/StateAct}.


Learning From Free-Text Human Feedback -- Collect New Datasets Or Extend Existing Ones?

arXiv.org Artificial Intelligence

Learning from free-text human feedback is essential for dialog systems, but annotated data is scarce and usually covers only a small fraction of error types known in conversational AI. Instead of collecting and annotating new datasets from scratch, recent advances in synthetic dialog generation could be used to augment existing dialog datasets with the necessary annotations. However, to assess the feasibility of such an effort, it is important to know the types and frequency of free-text human feedback included in these datasets. In this work, we investigate this question for a variety of commonly used dialog datasets, including MultiWoZ, SGD, BABI, PersonaChat, Wizards-of-Wikipedia, and the human-bot split of the Self-Feeding Chatbot. Using our observations, we derive new taxonomies for the annotation of free-text human feedback in dialogs and investigate the impact of including such data in response generation for three SOTA language generation models, including GPT-2, LLAMA, and Flan-T5. Our findings provide new insights into the composition of the datasets examined, including error types, user response types, and the relations between them.


Evolutionary Data Measures: Understanding the Difficulty of Text Classification Tasks

arXiv.org Artificial Intelligence

Classification tasks are usually analysed and improved through new model architectures or hyperparameter optimisation but the underlying properties of datasets are discovered on an ad-hoc basis as errors occur. However, understanding the properties of the data is crucial in perfecting models. In this paper we analyse exactly which characteristics of a dataset best determine how difficult that dataset is for the task of text classification. We then propose an intuitive measure of difficulty for text classification datasets which is simple and fast to calculate. We show that this measure generalises to unseen data by comparing it to state-of-the-art datasets and results. This measure can be used to analyse the precise source of errors in a dataset and allows fast estimation of how difficult a dataset is to learn. We searched for this measure by training 12 classical and neural network based models on 78 real-world datasets, then use a genetic algorithm to discover the best measure of difficulty. Our difficulty-calculating code ( https://github.com/Wluper/edm ) and datasets ( http://data.wluper.com ) are publicly available.