Roy, Subhro
BenchCLAMP: A Benchmark for Evaluating Language Models on Syntactic and Semantic Parsing
Roy, Subhro, Thomson, Sam, Chen, Tongfei, Shin, Richard, Pauls, Adam, Eisner, Jason, Van Durme, Benjamin
Recent work has shown that generation from a prompted or fine-tuned language model can perform well at semantic parsing when the output is constrained to be a valid semantic representation. We introduce BenchCLAMP, a Benchmark to evaluate Constrained LAnguage Model Parsing, that includes context-free grammars for seven semantic parsing datasets and two syntactic parsing datasets with varied output representations, as well as a constrained decoding interface to generate only valid outputs covered by these grammars. We provide low, medium, and high resource splits for each dataset, allowing accurate comparison of various language models under different data regimes. Our benchmark supports evaluation of language models using prompt-based learning as well as fine-tuning. We benchmark eight language models, including two GPT-3 variants available only through an API. Our experiments show that encoder-decoder pretrained language models can achieve similar performance or surpass state-of-the-art methods for syntactic and semantic parsing when the model output is constrained to be valid.
InstructExcel: A Benchmark for Natural Language Instruction in Excel
Payan, Justin, Mishra, Swaroop, Singh, Mukul, Negreanu, Carina, Poelitz, Christian, Baral, Chitta, Roy, Subhro, Chakravarthy, Rasika, Van Durme, Benjamin, Nouri, Elnaz
With the evolution of Large Language Models (LLMs) we can solve increasingly more complex NLP tasks across various domains, including spreadsheets. This work investigates whether LLMs can generate code (Excel OfficeScripts, a TypeScript API for executing many tasks in Excel) that solves Excel specific tasks provided via natural language user instructions. To do so we introduce a new large-scale benchmark, InstructExcel, created by leveraging the 'Automate' feature in Excel to automatically generate OfficeScripts from users' actions. Our benchmark includes over 10k samples covering 170+ Excel operations across 2,000 publicly available Excel spreadsheets. Experiments across various zero-shot and few-shot settings show that InstructExcel is a hard benchmark for state of the art models like GPT-4. We observe that (1) using GPT-4 over GPT-3.5, (2) providing more in-context examples, and (3) dynamic prompting can help improve performance on this benchmark.
ZEROTOP: Zero-Shot Task-Oriented Semantic Parsing using Large Language Models
Mekala, Dheeraj, Wolfe, Jason, Roy, Subhro
We explore the use of large language models (LLMs) for zero-shot semantic parsing. Semantic parsing involves mapping natural language utterances to task-specific meaning representations. Language models are generally trained on the publicly available text and code and cannot be expected to directly generalize to domain-specific parsing tasks in a zero-shot setting. In this work, we propose ZEROTOP, a zero-shot task-oriented parsing method that decomposes a semantic parsing problem into a set of abstractive and extractive question-answering (QA) problems, enabling us to leverage the ability of LLMs to zero-shot answer reading comprehension questions. For each utterance, we prompt the LLM with questions corresponding to its top-level intent and a set of slots and use the LLM generations to construct the target meaning representation. We observe that current LLMs fail to detect unanswerable questions; and as a result, cannot handle questions corresponding to missing slots. To address this problem, we fine-tune a language model on public QA datasets using synthetic negative samples. Experimental results show that our QA-based decomposition paired with the fine-tuned LLM can correctly parse ~16% of utterances in the MTOP dataset without requiring any annotated data.
Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving
Roy, Subhro (University of Illinois, Urbana Champaign) | Roth, Dan (University of Illinois, Urbana Champaign)
Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .
Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving
Roy, Subhro (University of Illinois, Urbana Champaign) | Roth, Dan (University of Illinois, Urbana Champaign)
Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .
Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving
Roy, Subhro (University of Illinois, Urbana Champaign) | Roth, Dan (University of Illinois, Urbana Champaign)
Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .
Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving
Roy, Subhro (University of Illinois, Urbana Champaign) | Roth, Dan (University of Illinois, Urbana Champaign)
Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .
Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving
Roy, Subhro (University of Illinois, Urbana Champaign) | Roth, Dan (University of Illinois, Urbana Champaign)
Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .
Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving
Roy, Subhro (University of Illinois, Urbana Champaign) | Roth, Dan (University of Illinois, Urbana Champaign)
Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .
Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving
Roy, Subhro (University of Illinois, Urbana Champaign) | Roth, Dan (University of Illinois, Urbana Champaign)
Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .