Goto

Collaborating Authors

 Roy, Subhankar


Group-robust Machine Unlearning

arXiv.org Artificial Intelligence

Machine unlearning is an emerging paradigm to remove the influence of specific training data (i.e., the forget set) from a model while preserving its knowledge of the rest of the data (i.e., the retain set). Previous approaches assume the forget data to be uniformly distributed from all training datapoints. However, if the data to unlearn is dominant in one group, we empirically show that performance for this group degrades, leading to fairness issues. This work tackles the overlooked problem of non-uniformly distributed forget sets, which we call group-robust machine unlearning, by presenting a simple, effective strategy that mitigates the performance loss in dominant groups via sample distribution reweighting. Moreover, we present MIU (Mutual Information-aware Machine Unlearning), the first approach for group robustness in approximate machine unlearning. MIU minimizes the mutual information between model features and group information, achieving unlearning while reducing performance degradation in the dominant group of the forget set. Additionally, MIU exploits sample distribution reweighting and mutual information calibration with the original model to preserve group robustness. We conduct experiments on three datasets and show that MIU outperforms standard methods, achieving unlearning without compromising model robustness. Source code available at https://github.com/tdemin16/group-robust_machine_unlearning.


Less is more: Summarizing Patch Tokens for efficient Multi-Label Class-Incremental Learning

arXiv.org Artificial Intelligence

Prompt tuning has emerged as an effective rehearsal-free technique for class-incremental learning (CIL) that learns a tiny set of task-specific parameters (or prompts) to instruct a pre-trained transformer to learn on a sequence of tasks. Albeit effective, prompt tuning methods do not lend well in the multi-label class incremental learning (MLCIL) scenario (where an image contains multiple foreground classes) due to the ambiguity in selecting the correct prompt(s) corresponding to different foreground objects belonging to multiple tasks. To circumvent this issue we propose to eliminate the prompt selection mechanism by maintaining task-specific pathways, which allow us to learn representations that do not interact with the ones from the other tasks. Since independent pathways in truly incremental scenarios will result in an explosion of computation due to the quadratically complex multi-head self-attention (MSA) operation in prompt tuning, we propose to reduce the original patch token embeddings into summarized tokens. Prompt tuning is then applied to these fewer summarized tokens to compute the final representation. Our proposed method Multi-Label class incremental learning via summarising pAtch tokeN Embeddings (MULTI-LANE) enables learning disentangled task-specific representations in MLCIL while ensuring fast inference. We conduct experiments in common benchmarks and demonstrate that our MULTI-LANE achieves a new state-of-the-art in MLCIL. Additionally, we show that MULTI-LANE is also competitive in the CIL setting. Source code available at https://github.com/tdemin16/multi-lane


Collaborating Foundation models for Domain Generalized Semantic Segmentation

arXiv.org Artificial Intelligence

Domain Generalized Semantic Segmentation (DGSS) deals with training a model on a labeled source domain with the aim of generalizing to unseen domains during inference. Existing DGSS methods typically effectuate robust features by means of Domain Randomization (DR). Such an approach is often limited as it can only account for style diversification and not content. In this work, we take an orthogonal approach to DGSS and propose to use an assembly of CoLlaborative FOUndation models for Domain Generalized Semantic Segmentation (CLOUDS). In detail, CLOUDS is a framework that integrates FMs of various kinds: (i) CLIP backbone for its robust feature representation, (ii) generative models to diversify the content, thereby covering various modes of the possible target distribution, and (iii) Segment Anything Model (SAM) for iteratively refining the predictions of the segmentation model. Extensive experiments show that our CLOUDS excels in adapting from synthetic to real DGSS benchmarks and under varying weather conditions, notably outperforming prior methods by 5.6% and 6.7% on averaged miou, respectively. The code is available at : https://github.com/yasserben/CLOUDS


Weighted Ensemble Models Are Strong Continual Learners

arXiv.org Artificial Intelligence

In this work, we study the problem of continual learning (CL) where the goal is to learn a model on a sequence of tasks, such that the data from the previous tasks becomes unavailable while learning on the current task data. CL is essentially a balancing act between being able to learn on the new task (i.e., plasticity) and maintaining the performance on the previously learned concepts (i.e., stability). With an aim to address the stability-plasticity trade-off, we propose to perform weight-ensembling of the model parameters of the previous and current task. This weight-ensembled model, which we call Continual Model Averaging (or CoMA), attains high accuracy on the current task by leveraging plasticity, while not deviating too far from the previous weight configuration, ensuring stability. We also propose an improved variant of CoMA, named Continual Fisher-weighted Model Averaging (or CoFiMA), that selectively weighs each parameter in the weight ensemble by leveraging the Fisher information of the weights of the model. Both the variants are conceptually simple, easy to implement, and effective in attaining state-of-the-art performance on several standard CL benchmarks.


Rethinking Class-incremental Learning in the Era of Large Pre-trained Models via Test-Time Adaptation

arXiv.org Artificial Intelligence

Class-incremental learning (CIL) is a challenging task that involves continually learning to categorize classes into new tasks without forgetting previously learned information. The advent of the large pre-trained models (PTMs) has fast-tracked the progress in CIL due to the highly transferable PTM representations, where tuning a small set of parameters results in state-of-the-art performance when compared with the traditional CIL methods that are trained from scratch. However, repeated fine-tuning on each task destroys the rich representations of the PTMs and further leads to forgetting previous tasks. To strike a balance between the stability and plasticity of PTMs for CIL, we propose a novel perspective of eliminating training on every new task and instead performing test-time adaptation (TTA) directly on the test instances. Concretely, we propose "Test-Time Adaptation for Class-Incremental Learning" (TTACIL) that first fine-tunes Layer Norm parameters of the PTM on each test instance for learning task-specific features, and then resets them back to the base model to preserve stability. As a consequence, TTACIL does not undergo any forgetting, while benefiting each task with the rich PTM features. Additionally, by design, our method is robust to common data corruptions. Our TTACIL outperforms several state-of-the-art CIL methods when evaluated on multiple CIL benchmarks under both clean and corrupted data.


Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery

arXiv.org Artificial Intelligence

Discovering novel concepts from unlabelled data and in In this work we study the problem of Novel Class Discovery a continuous manner is an important desideratum of lifelong (NCD) [19] where the goal is to train neural networks learners. In the literature such problems have been to discover (or group) novel visual concepts present partially addressed under very restricted settings, where in an unlabelled dataset into semantically meaningful clusters, either access to labelled data is provided for discovering while leveraging prior knowledge learned from supervised novel concepts (e.g., NCD) or learning occurs for a limited pre-training on a labelled dataset containing disjoint number of incremental steps (e.g., class-iNCD). In this work classes (see Fig 1b). Note that NCD is different from fully we challenge the status quo and propose a more challenging unsupervised clustering as there can be several criteria to and practical learning paradigm called MSc-iNCD, where cluster a dataset unsupervisedly (see Figure 1a). Ever since learning occurs continuously and unsupervisedly, while exploiting the pioneering work by Han et al., [19] the field of NCD has the rich priors from large-scale pre-trained models.


Neighborhood Contrastive Learning for Novel Class Discovery

arXiv.org Artificial Intelligence

In this paper, we address Novel Class Discovery (NCD), the task of unveiling new classes in a set of unlabeled samples given a labeled dataset with known classes. We exploit the peculiarities of NCD to build a new framework, named Neighborhood Contrastive Learning (NCL), to learn discriminative representations that are important to clustering performance. Our contribution is twofold. First, we find that a feature extractor trained on the labeled set generates representations in which a generic query sample and its neighbors are likely to share the same class. We exploit this observation to retrieve and aggregate pseudo-positive pairs with contrastive learning, thus encouraging the model to learn more discriminative representations. Second, we notice that most of the instances are easily discriminated by the network, contributing less to the contrastive loss. To overcome this issue, we propose to generate hard negatives by mixing labeled and unlabeled samples in the feature space. We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin (e.g., clustering accuracy +13% on CIFAR-100 and +8% on ImageNet).