Roy, Nicholas
AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers
Chen, Yongchao, Arkin, Jacob, Dawson, Charles, Zhang, Yang, Roy, Nicholas, Fan, Chuchu
For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks described by natural language. Recent advances in large language models (LLMs) have shown promise for translating natural language into robot action sequences for complex tasks. However, existing approaches either translate the natural language directly into robot trajectories or factor the inference process by decomposing language into task sub-goals and relying on a motion planner to execute each sub-goal. When complex environmental and temporal constraints are involved, inference over planning tasks must be performed jointly with motion plans using traditional task-and-motion planning (TAMP) algorithms, making factorization into subgoals untenable. Rather than using LLMs to directly plan task sub-goals, we instead perform few-shot translation from natural language task descriptions to an intermediate task representation that can then be consumed by a TAMP algorithm to jointly solve the task and motion plan. To improve translation, we automatically detect and correct both syntactic and semantic errors via autoregressive re-prompting, resulting in significant improvements in task completion. We show that our approach outperforms several methods using LLMs as planners in complex task domains. See our project website https://yongchao98.github.io/MIT-REALM-AutoTAMP/ for prompts, videos, and code.
Scalable Multi-Robot Collaboration with Large Language Models: Centralized or Decentralized Systems?
Chen, Yongchao, Arkin, Jacob, Zhang, Yang, Roy, Nicholas, Fan, Chuchu
A flurry of recent work has demonstrated that pre-trained large language models (LLMs) can be effective task planners for a variety of single-robot tasks. The planning performance of LLMs is significantly improved via prompting techniques, such as in-context learning or re-prompting with state feedback, placing new importance on the token budget for the context window. An under-explored but natural next direction is to investigate LLMs as multi-robot task planners. However, long-horizon, heterogeneous multi-robot planning introduces new challenges of coordination while also pushing up against the limits of context window length. It is therefore critical to find token-efficient LLM planning frameworks that are also able to reason about the complexities of multi-robot coordination. In this work, we compare the task success rate and token efficiency of four multi-agent communication frameworks (centralized, decentralized, and two hybrid) as applied to four coordination-dependent multi-agent 2D task scenarios for increasing numbers of agents. We find that a hybrid framework achieves better task success rates across all four tasks and scales better to more agents. We further demonstrate the hybrid frameworks in 3D simulations where the vision-to-text problem and dynamical errors are considered. See our project website https://yongchao98.github.io/MIT-REALM-Multi-Robot/ for prompts, videos, and code.
Structured Latent Variable Models for Articulated Object Interaction
Liu, Emily, Noseworthy, Michael, Roy, Nicholas
In this paper, we investigate a scenario in which a robot learns a low-dimensional representation of a door given a video of the door opening or closing. This representation can be used to infer door-related parameters and predict the outcomes of interacting with the door. Current machine learning based approaches in the doors domain are based primarily on labelled datasets. However, the large quantity of available door data suggests the feasibility of a semisupervised approach based on pretraining. To exploit the hierarchical structure of the dataset where each door has multiple associated images, we pretrain with a structured latent variable model known as a neural statistician. The neural satsitician enforces separation between shared context-level variables (common across all images associated with the same door) and instance-level variables (unique to each individual image). We first demonstrate that the neural statistician is able to learn an embedding that enables reconstruction and sampling of realistic door images. Then, we evaluate the correspondence of the learned embeddings to human-interpretable parameters in a series of supervised inference tasks. It was found that a pretrained neural statistician encoder outperformed analogous context-free baselines when predicting door handedness, size, angle location, and configuration from door images. Finally, in a visual bandit door-opening task with a variety of door configuration, we found that neural statistician embeddings achieve lower regret than context-free baselines.
Active Learning of Abstract Plan Feasibility
Noseworthy, Michael, Moses, Caris, Brand, Isaiah, Castro, Sebastian, Kaelbling, Leslie, Lozano-Pรฉrez, Tomรกs, Roy, Nicholas
Long horizon sequential manipulation tasks are effectively addressed hierarchically: at a high level of abstraction the planner searches over abstract action sequences, and when a plan is found, lower level motion plans are generated. Such a strategy hinges on the ability to reliably predict that a feasible low level plan will be found which satisfies the abstract plan. However, computing Abstract Plan Feasibility (APF) is difficult because the outcome of a plan depends on real-world phenomena that are difficult to model, such as noise in estimation and execution. In this work, we present an active learning approach to efficiently acquire an APF predictor through task-independent, curious exploration on a robot. The robot identifies plans whose outcomes would be informative about APF, executes those plans, and learns from their successes or failures. Critically, we leverage an infeasible subsequence property to prune candidate plans in the active learning strategy, allowing our system to learn from less data. We evaluate our strategy in simulation and on a real Franka Emika Panda robot with integrated perception, experimentation, planning, and execution. In a stacking domain where objects have non-uniform mass distributions, we show that our system permits real robot learning of an APF model in four hundred self-supervised interactions, and that our learned model can be used effectively in multiple downstream tasks.
Online Descriptor Enhancement via Self-Labelling Triplets for Visual Data Association
Shaoul, Yorai, Liu, Katherine, Ok, Kyel, Roy, Nicholas
Object-level data association is central to robotic applications such as tracking-by-detection and object-level simultaneous localization and mapping. While current learned visual data association methods outperform hand-crafted algorithms, many rely on large collections of domain-specific training examples that can be difficult to obtain without prior knowledge. Additionally, such methods often remain fixed during inference-time and do not harness observed information to better their performance. We propose a self-supervised method for incrementally refining visual descriptors to improve performance in the task of object-level visual data association. Our method optimizes deep descriptor generators online, by continuously training a widely available image classification network pre-trained with domain-independent data. We show that earlier layers in the network outperform later-stage layers for the data association task while also allowing for a 94% reduction in the number of parameters, enabling the online optimization. We show that self-labelling challenging triplets--choosing positive examples separated by large temporal distances and negative examples close in the descriptor space--improves the quality of the learned descriptors for the multi-object tracking task. Finally, we demonstrate that our approach surpasses other visual data-association methods applied to a tracking-by-detection task, and show that it provides better performance-gains when compared to other methods that attempt to adapt to observed information.
Visual Prediction of Priors for Articulated Object Interaction
Moses, Caris, Noseworthy, Michael, Kaelbling, Leslie Pack, Lozano-Pรฉrez, Tomรกs, Roy, Nicholas
Exploration in novel settings can be challenging without prior experience in similar domains. However, humans are able to build on prior experience quickly and efficiently. Children exhibit this behavior when playing with toys. For example, given a toy with a yellow and blue door, a child will explore with no clear objective, but once they have discovered how to open the yellow door, they will most likely be able to open the blue door much faster. Adults also exhibit this behavior when entering new spaces such as kitchens. We develop a method, Contextual Prior Prediction, which provides a means of transferring knowledge between interactions in similar domains through vision. We develop agents that exhibit exploratory behavior with increasing efficiency, by learning visual features that are shared across environments, and how they correlate to actions. Our problem is formulated as a Contextual Multi-Armed Bandit where the contexts are images, and the robot has access to a parameterized action space. Given a novel object, the objective is to maximize reward with few interactions. A domain which strongly exhibits correlations between visual features and motion is kinemetically constrained mechanisms. We evaluate our method on simulated prismatic and revolute joints.
Admissible Abstractions for Near-optimal Task and Motion Planning
Vega-Brown, William, Roy, Nicholas
We define an admissibility condition for abstractions expressed using angelic semantics and show that these conditions allow us to accelerate planning while preserving the ability to find the optimal motion plan. We then derive admissible abstractions for two motion planning domains with continuous state. We extract upper and lower bounds on the cost of concrete motion plans using local metric and topological properties of the problem domain. These bounds guide the search for a plan while maintaining performance guarantees. We show that abstraction can dramatically reduce the complexity of search relative to a direct motion planner. Using our abstractions, we find near-optimal motion plans in planning problems involving $10^{13}$ states without using a separate task planner.
Feature discovery and visualization of robot mission data using convolutional autoencoders and Bayesian nonparametric topic models
Flaspohler, Genevieve, Roy, Nicholas, Girdhar, Yogesh
The gap between our ability to collect interesting data and our ability to analyze these data is growing at an unprecedented rate. Recent algorithmic attempts to fill this gap have employed unsupervised tools to discover structure in data. Some of the most successful approaches have used probabilistic models to uncover latent thematic structure in discrete data. Despite the success of these models on textual data, they have not generalized as well to image data, in part because of the spatial and temporal structure that may exist in an image stream. We introduce a novel unsupervised machine learning framework that incorporates the ability of convolutional autoencoders to discover features from images that directly encode spatial information, within a Bayesian nonparametric topic model that discovers meaningful latent patterns within discrete data. By using this hybrid framework, we overcome the fundamental dependency of traditional topic models on rigidly hand-coded data representations, while simultaneously encoding spatial dependency in our topics without adding model complexity. We apply this model to the motivating application of high-level scene understanding and mission summarization for exploratory marine robots. Our experiments on a seafloor dataset collected by a marine robot show that the proposed hybrid framework outperforms current state-of-the-art approaches on the task of unsupervised seafloor terrain characterization.
Structural Return Maximization for Reinforcement Learning
Joseph, Joshua, Velez, Javier, Roy, Nicholas
Batch Reinforcement Learning (RL) algorithms attempt to choose a policy from a designer-provided class of policies given a fixed set of training data. Choosing the policy which maximizes an estimate of return often leads to over-fitting when only limited data is available, due to the size of the policy class in relation to the amount of data available. In this work, we focus on learning policy classes that are appropriately sized to the amount of data available. We accomplish this by using the principle of Structural Risk Minimization, from Statistical Learning Theory, which uses Rademacher complexity to identify a policy class that maximizes a bound on the return of the best policy in the chosen policy class, given the available data. Unlike similar batch RL approaches, our bound on return requires only extremely weak assumptions on the true system.
Efficient Planning under Uncertainty with Macro-actions
He, Ruijie, Brunskill, Emma, Roy, Nicholas
Deciding how to act in partially observable environments remains an active area of research. Identifying good sequences of decisions is particularly challenging when good control performance requires planning multiple steps into the future in domains with many states. Towards addressing this challenge, we present an online, forward-search algorithm called the Posterior Belief Distribution (PBD). PBD leverages a novel method for calculating the posterior distribution over beliefs that result after a sequence of actions is taken, given the set of observation sequences that could be received during this process. This method allows us to efficiently evaluate the expected reward of a sequence of primitive actions, which we refer to as macro-actions. We present a formal analysis of our approach, and examine its performance on two very large simulation experiments: scientific exploration and a target monitoring domain. We also demonstrate our algorithm being used to control a real robotic helicopter in a target monitoring experiment, which suggests that our approach has practical potential for planning in real-world, large partially observable domains where a multi-step lookahead is required to achieve good performance.