Goto

Collaborating Authors

 Roy, Arjun


TOFFE -- Temporally-binned Object Flow from Events for High-speed and Energy-Efficient Object Detection and Tracking

arXiv.org Artificial Intelligence

Object detection and tracking is an essential perception task for enabling fully autonomous navigation in robotic systems. Edge robot systems such as small drones need to execute complex maneuvers at high-speeds with limited resources, which places strict constraints on the underlying algorithms and hardware. Traditionally, frame-based cameras are used for vision-based perception due to their rich spatial information and simplified synchronous sensing capabilities. However, obtaining detailed information across frames incurs high energy consumption and may not even be required. In addition, their low temporal resolution renders them ineffective in high-speed motion scenarios. Event-based cameras offer a biologically-inspired solution to this by capturing only changes in intensity levels at exceptionally high temporal resolution and low power consumption, making them ideal for high-speed motion scenarios. However, their asynchronous and sparse outputs are not natively suitable with conventional deep learning methods. In this work, we propose TOFFE, a lightweight hybrid framework for performing event-based object motion estimation (including pose, direction, and speed estimation), referred to as Object Flow. TOFFE integrates bio-inspired Spiking Neural Networks (SNNs) and conventional Analog Neural Networks (ANNs), to efficiently process events at high temporal resolutions while being simple to train. Additionally, we present a novel event-based synthetic dataset involving high-speed object motion to train TOFFE. Our experimental results show that TOFFE achieves 5.7x/8.3x reduction in energy consumption and 4.6x/5.8x reduction in latency on edge GPU(Jetson TX2)/hybrid hardware(Loihi-2 and Jetson TX2), compared to previous event-based object detection baselines.


Adversarial Robustness of VAEs across Intersectional Subgroups

arXiv.org Artificial Intelligence

Despite advancements in Autoencoders (AEs) for tasks like dimensionality reduction, representation learning and data generation, they remain vulnerable to adversarial attacks. Variational Autoencoders (VAEs), with their probabilistic approach to disentangling latent spaces, show stronger resistance to such perturbations compared to deterministic AEs; however, their resilience against adversarial inputs is still a concern. This study evaluates the robustness of VAEs against non-targeted adversarial attacks by optimizing minimal sample-specific perturbations to cause maximal damage across diverse demographic subgroups (combinations of age and gender). We investigate two questions: whether there are robustness disparities among subgroups, and what factors contribute to these disparities, such as data scarcity and representation entanglement. Our findings reveal that robustness disparities exist but are not always correlated with the size of the subgroup. By using downstream gender and age classifiers and examining latent embeddings, we highlight the vulnerability of subgroups like older women, who are prone to misclassification due to adversarial perturbations pushing their representations toward those of other subgroups.


FairBranch: Fairness Conflict Correction on Task-group Branches for Fair Multi-Task Learning

arXiv.org Artificial Intelligence

The generalization capacity of Multi-Task Learning (MTL) becomes limited when unrelated tasks negatively impact each other by updating shared parameters with conflicting gradients, resulting in negative transfer and a reduction in MTL accuracy compared to single-task learning (STL). Recently, there has been an increasing focus on the fairness of MTL models, necessitating the optimization of both accuracy and fairness for individual tasks. Similarly to how negative transfer affects accuracy, task-specific fairness considerations can adversely influence the fairness of other tasks when there is a conflict of fairness loss gradients among jointly learned tasks, termed bias transfer. To address both negative and bias transfer in MTL, we introduce a novel method called FairBranch. FairBranch branches the MTL model by assessing the similarity of learned parameters, grouping related tasks to mitigate negative transfer. Additionally, it incorporates fairness loss gradient conflict correction between adjoining task-group branches to address bias transfer within these task groups. Our experiments in tabular and visual MTL problems demonstrate that FairBranch surpasses state-of-the-art MTL methods in terms of both fairness and accuracy.


Multi-dimensional discrimination in Law and Machine Learning -- A comparative overview

arXiv.org Artificial Intelligence

AI-driven decision-making can lead to discrimination against certain individuals or social groups based on protected characteristics/attributes such as race, gender, or age. The domain of fairness-aware machine learning focuses on methods and algorithms for understanding, mitigating, and accounting for bias in AI/ML models. Still, thus far, the vast majority of the proposed methods assess fairness based on a single protected attribute, e.g. only gender or race. In reality, though, human identities are multi-dimensional, and discrimination can occur based on more than one protected characteristic, leading to the so-called ``multi-dimensional discrimination'' or ``multi-dimensional fairness'' problem. While well-elaborated in legal literature, the multi-dimensionality of discrimination is less explored in the machine learning community. Recent approaches in this direction mainly follow the so-called intersectional fairness definition from the legal domain, whereas other notions like additive and sequential discrimination are less studied or not considered thus far. In this work, we overview the different definitions of multi-dimensional discrimination/fairness in the legal domain as well as how they have been transferred/ operationalized (if) in the fairness-aware machine learning domain. By juxtaposing these two domains, we draw the connections, identify the limitations, and point out open research directions.


Parity-based Cumulative Fairness-aware Boosting

arXiv.org Artificial Intelligence

Data-driven AI systems can lead to discrimination on the basis of protected attributes like gender or race. One reason for this behavior is the encoded societal biases in the training data (e.g., females are underrepresented), which is aggravated in the presence of unbalanced class distributions (e.g., "granted" is the minority class). State-of-the-art fairness-aware machine learning approaches focus on preserving the \emph{overall} classification accuracy while improving fairness. In the presence of class-imbalance, such methods may further aggravate the problem of discrimination by denying an already underrepresented group (e.g., \textit{females}) the fundamental rights of equal social privileges (e.g., equal credit opportunity). To this end, we propose AdaFair, a fairness-aware boosting ensemble that changes the data distribution at each round, taking into account not only the class errors but also the fairness-related performance of the model defined cumulatively based on the partial ensemble. Except for the in-training boosting of the group discriminated over each round, AdaFair directly tackles imbalance during the post-training phase by optimizing the number of ensemble learners for balanced error performance (BER). AdaFair can facilitate different parity-based fairness notions and mitigate effectively discriminatory outcomes. Our experiments show that our approach can achieve parity in terms of statistical parity, equal opportunity, and disparate mistreatment while maintaining good predictive performance for all classes.