Rothe, Sascha
On Relation-Specific Neurons in Large Language Models
Liu, Yihong, Chen, Runsheng, Hirlimann, Lea, Hakimi, Ahmad Dawar, Wang, Mingyang, Kargaran, Amir Hossein, Rothe, Sascha, Yvon, François, Schütze, Hinrich
In large language models (LLMs), certain neurons can store distinct pieces of knowledge learned during pretraining. While knowledge typically appears as a combination of relations and entities, it remains unclear whether some neurons focus on a relation itself -- independent of any entity. We hypothesize such neurons detect a relation in the input text and guide generation involving such a relation. To investigate this, we study the Llama-2 family on a chosen set of relations with a statistics-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation $r$ on the LLM's ability to handle (1) facts whose relation is $r$ and (2) facts whose relation is a different relation $r' \neq r$. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. $\textbf{(i) Neuron cumulativity.}$ The neurons for $r$ present a cumulative effect so that deactivating a larger portion of them results in the degradation of more facts in $r$. $\textbf{(ii) Neuron versatility.}$ Neurons can be shared across multiple closely related as well as less related relations. Some relation neurons transfer across languages. $\textbf{(iii) Neuron interference.}$ Deactivating neurons specific to one relation can improve LLM generation performance for facts of other relations. We will make our code publicly available at https://github.com/cisnlp/relation-specific-neurons.
LM-CPPF: Paraphrasing-Guided Data Augmentation for Contrastive Prompt-Based Few-Shot Fine-Tuning
Abaskohi, Amirhossein, Rothe, Sascha, Yaghoobzadeh, Yadollah
In recent years, there has been significant progress in developing pre-trained language models for NLP. However, these models often struggle when fine-tuned on small datasets. To address this issue, researchers have proposed various adaptation approaches. Prompt-based tuning is arguably the most common way, especially for larger models. Previous research shows that adding contrastive learning to prompt-based fine-tuning is effective as it helps the model generate embeddings that are more distinguishable between classes, and it can also be more sample-efficient as the model learns from positive and negative examples simultaneously. One of the most important components of contrastive learning is data augmentation, but unlike computer vision, effective data augmentation for NLP is still challenging. This paper proposes LM-CPPF, Contrastive Paraphrasing-guided Prompt-based Fine-tuning of Language Models, which leverages prompt-based few-shot paraphrasing using generative language models, especially large language models such as GPT-3 and OPT-175B, for data augmentation. Our experiments on multiple text classification benchmarks show that this augmentation method outperforms other methods, such as easy data augmentation, back translation, and multiple templates.
Zero-Shot Retrieval with Search Agents and Hybrid Environments
Huebscher, Michelle Chen, Buck, Christian, Ciaramita, Massimiliano, Rothe, Sascha
Learning to search is the task of building artificial agents that learn to autonomously use a search box to find information. So far, it has been shown that current language models can learn symbolic query reformulation policies, in combination with traditional term-based retrieval, but fall short of outperforming neural retrievers. We extend the previous learning to search setup to a hybrid environment, which accepts discrete query refinement operations, after a first-pass retrieval step via a dual encoder. Experiments on the BEIR task show that search agents, trained via behavioral cloning, outperform the underlying search system based on a combined dual encoder retriever and cross encoder reranker. Furthermore, we find that simple heuristic Hybrid Retrieval Environments (HRE) can improve baseline performance by several nDCG points. The search agent based on HRE (HARE) matches state-of-the-art performance, balanced in both zero-shot and in-domain evaluations, via interpretable actions, and at twice the speed.
A Simple Recipe for Multilingual Grammatical Error Correction
Rothe, Sascha, Mallinson, Jonathan, Malmi, Eric, Krause, Sebastian, Severyn, Aliaksei
This paper presents a simple recipe to train state-of-the-art multilingual Grammatical Error Correction (GEC) models. We achieve this by first proposing a language-agnostic method to generate a large number of synthetic examples. The second ingredient is to use large-scale multilingual language models (up to 11B parameters). Once fine-tuned on language-specific supervised sets we surpass the previous state-of-the-art results on GEC benchmarks in four languages: English, Czech, German and Russian. Having established a new set of baselines for GEC, we make our results easily reproducible and accessible by releasing a cLang-8 dataset. It is produced by using our best model, which we call gT5, to clean the targets of a widely used yet noisy lang-8 dataset. cLang-8 greatly simplifies typical GEC training pipelines composed of multiple fine-tuning stages -- we demonstrate that performing a single fine-tuning step on cLang-8 with the off-the-shelf language models yields further accuracy improvements over an already top-performing gT5 model for English.
Leveraging Pre-trained Checkpoints for Sequence Generation Tasks
Rothe, Sascha, Narayan, Shashi, Severyn, Aliaksei
Unsupervised pre-training of large neural models has recently revolutionized Natural Language Processing. By warm-starting from the publicly released checkpoints, NLP practitioners have pushed the state-of-the-art on multiple benchmarks while saving significant amounts of compute time. So far the focus has been mainly on the Natural Language Understanding tasks. In this paper, we demonstrate the efficacy of pre-trained checkpoints for Sequence Generation. We developed a Transformer-based sequence-to-sequence model that is compatible with publicly available pre-trained BERT, GPT-2 and RoBERTa checkpoints and conducted an extensive empirical study on the utility of initializing our model, both encoder and decoder, with these checkpoints. Our models result in new state-of-the-art results on Machine Translation, Text Summarization, Sentence Splitting, and Sentence Fusion.
Avoiding Your Teacher's Mistakes: Training Neural Networks with Controlled Weak Supervision
Dehghani, Mostafa, Severyn, Aliaksei, Rothe, Sascha, Kamps, Jaap
Training deep neural networks requires massive amounts of training data, but for many tasks only limited labeled data is available. This makes weak supervision attractive, using weak or noisy signals like the output of heuristic methods or user click-through data for training. In a semi-supervised setting, we can use a large set of data with weak labels to pretrain a neural network and then fine-tune the parameters with a small amount of data with true labels. This feels intuitively sub-optimal as these two independent stages leave the model unaware about the varying label quality. What if we could somehow inform the model about the label quality? In this paper, we propose a semi-supervised learning method where we train two neural networks in a multi-task fashion: a "target network" and a "confidence network". The target network is optimized to perform a given task and is trained using a large set of unlabeled data that are weakly annotated. We propose to weight the gradient updates to the target network using the scores provided by the second confidence network, which is trained on a small amount of supervised data. Thus we avoid that the weight updates computed from noisy labels harm the quality of the target network model. We evaluate our learning strategy on two different tasks: document ranking and sentiment classification. The results demonstrate that our approach not only enhances the performance compared to the baselines but also speeds up the learning process from weak labels.
Learning to Learn from Weak Supervision by Full Supervision
Dehghani, Mostafa, Severyn, Aliaksei, Rothe, Sascha, Kamps, Jaap
In this paper, we propose a method for training neural networks when we have a large set of data with weak labels and a small amount of data with true labels. In our proposed model, we train two neural networks: a target network, the learner and a confidence network, the meta-learner. The target network is optimized to perform a given task and is trained using a large set of unlabeled data that are weakly annotated. We propose to control the magnitude of the gradient updates to the target network using the scores provided by the second confidence network, which is trained on a small amount of supervised data. Thus we avoid that the weight updates computed from noisy labels harm the quality of the target network model.
Ultradense Word Embeddings by Orthogonal Transformation
Rothe, Sascha, Ebert, Sebastian, Schütze, Hinrich
Embeddings are generic representations that are useful for many NLP tasks. In this paper, we introduce DENSIFIER, a method that learns an orthogonal transformation of the embedding space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We show that ultradense embeddings generated by DENSIFIER reach state of the art on a lexicon creation task in which words are annotated with three types of lexical information - sentiment, concreteness and frequency. On the SemEval2015 10B sentiment analysis task we show that no information is lost when the ultradense subspace is used, but training is an order of magnitude more efficient due to the compactness of the ultradense space.
AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes
Rothe, Sascha, Schütze, Hinrich
We present \textit{AutoExtend}, a system to learn embeddings for synsets and lexemes. It is flexible in that it can take any word embeddings as input and does not need an additional training corpus. The synset/lexeme embeddings obtained live in the same vector space as the word embeddings. A sparse tensor formalization guarantees efficiency and parallelizability. We use WordNet as a lexical resource, but AutoExtend can be easily applied to other resources like Freebase. AutoExtend achieves state-of-the-art performance on word similarity and word sense disambiguation tasks.