Goto

Collaborating Authors

 Rostamzadeh, Negar


Position: Cracking the Code of Cascading Disparity Towards Marginalized Communities

arXiv.org Artificial Intelligence

The rise of foundation models holds immense promise for advancing AI, but this progress may amplify existing risks and inequalities, leaving marginalized communities behind. In this position paper, we discuss that disparities towards marginalized communities - performance, representation, privacy, robustness, interpretability and safety - are not isolated concerns but rather interconnected elements of a cascading disparity phenomenon. We contrast foundation models with traditional models and highlight the potential for exacerbated disparity against marginalized communities. Moreover, we emphasize the unique threat of cascading impacts in foundation models, where interconnected disparities can trigger long-lasting negative consequences, specifically to the people on the margin. We define marginalized communities within the machine learning context and explore the multifaceted nature of disparities. We analyze the sources of these disparities, tracing them from data creation, training and deployment procedures to highlight the complex technical and socio-technical landscape. To mitigate the pressing crisis, we conclude with a set of calls to action to mitigate disparity at its source.


A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) hold immense promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. In this work, we present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and then conduct an empirical case study with Med-PaLM 2, resulting in the largest human evaluation study in this area to date. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases, and EquityMedQA, a collection of seven newly-released datasets comprising both manually-curated and LLM-generated questions enriched for adversarial queries. Both our human assessment framework and dataset design process are grounded in an iterative participatory approach and review of possible biases in Med-PaLM 2 answers to adversarial queries. Through our empirical study, we find that the use of a collection of datasets curated through a variety of methodologies, coupled with a thorough evaluation protocol that leverages multiple assessment rubric designs and diverse rater groups, surfaces biases that may be missed via narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. We emphasize that while our framework can identify specific forms of bias, it is not sufficient to holistically assess whether the deployment of an AI system promotes equitable health outcomes. We hope the broader community leverages and builds on these tools and methods towards realizing a shared goal of LLMs that promote accessible and equitable healthcare for all.


The Case for Globalizing Fairness: A Mixed Methods Study on Colonialism, AI, and Health in Africa

arXiv.org Artificial Intelligence

With growing application of machine learning (ML) technologies in healthcare, there have been calls for developing techniques to understand and mitigate biases these systems may exhibit. Fair-ness considerations in the development of ML-based solutions for health have particular implications for Africa, which already faces inequitable power imbalances between the Global North and South.This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose axes of disparities for fairness consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 672 general population study participants and 28 experts inML, health, and policy focused on Africa to obtain corroborative evidence on the proposed axes of disparities. Our analysis focuses on colonialism as the attribute of interest and examines the interplay between artificial intelligence (AI), health, and colonialism. Among the pre-identified attributes, we found that colonial history, country of origin, and national income level were specific axes of disparities that participants believed would cause an AI system to be biased.However, there was also divergence of opinion between experts and general population participants. Whereas experts generally expressed a shared view about the relevance of colonial history for the development and implementation of AI technologies in Africa, the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism. Based on these findings, we provide practical recommendations for developing fairness-aware ML solutions for health in Africa.


Bias-inducing geometries: an exactly solvable data model with fairness implications

arXiv.org Machine Learning

Machine learning (ML) may be oblivious to human bias but it is not immune to its perpetuation. Marginalisation and iniquitous group representation are often traceable in the very data used for training, and may be reflected or even enhanced by the learning models. In the present work, we aim at clarifying the role played by data geometry in the emergence of ML bias. We introduce an exactly solvable high-dimensional model of data imbalance, where parametric control over the many bias-inducing factors allows for an extensive exploration of the bias inheritance mechanism. Through the tools of statistical physics, we analytically characterise the typical properties of learning models trained in this synthetic framework and obtain exact predictions for the observables that are commonly employed for fairness assessment. Despite the simplicity of the data model, we retrace and unpack typical unfairness behaviour observed on real-world datasets. We also obtain a detailed analytical characterisation of a class of bias mitigation strategies. We first consider a basic loss-reweighing scheme, which allows for an implicit minimisation of different unfairness metrics, and quantify the incompatibilities between some existing fairness criteria. Then, we consider a novel mitigation strategy based on a matched inference approach, consisting in the introduction of coupled learning models. Our theoretical analysis of this approach shows that the coupled strategy can strike superior fairness-accuracy trade-offs.


Thinking Beyond Distributions in Testing Machine Learned Models

arXiv.org Artificial Intelligence

Testing practices within the machine learning (ML) community have centered around assessing a learned model's predictive performance measured against a test dataset, often drawn from the same distribution as the training dataset. While recent work on robustness and fairness testing within the ML community has pointed to the importance of testing against distributional shifts, these efforts also focus on estimating the likelihood of the model making an error against a reference dataset/distribution. We argue that this view of testing actively discourages researchers and developers from looking into other sources of robustness failures, for instance corner cases which may have severe undesirable impacts. We draw parallels with decades of work within software engineering testing focused on assessing a software system against various stress conditions, including corner cases, as opposed to solely focusing on average-case behaviour. Finally, we put forth a set of recommendations to broaden the view of machine learning testing to a rigorous practice.


Deep Cox Mixtures for Survival Regression

arXiv.org Machine Learning

Survival analysis is a challenging variation of regression modeling because of the presence of censoring, where the outcome measurement is only partially known, due to, for example, loss to follow up. Such problems come up frequently in medical applications, making survival analysis a key endeavor in biostatistics and machine learning for healthcare, with Cox regression models being amongst the most commonly employed models. We describe a new approach for survival analysis regression models, based on learning mixtures of Cox regressions to model individual survival distributions. We propose an approximation to the Expectation Maximization algorithm for this model that does hard assignments to mixture groups to make optimization efficient. In each group assignment, we fit the hazard ratios within each group using deep neural networks, and the baseline hazard for each mixture component non-parametrically. We perform experiments on multiple real world datasets, and look at the mortality rates of patients across ethnicity and gender. We emphasize the importance of calibration in healthcare settings and demonstrate that our approach outperforms classical and modern survival analysis baselines, both in terms of discriminative performance and calibration, with large gains in performance on the minority demographics.


Post-Workshop Report on Science meets Engineering in Deep Learning, NeurIPS 2019, Vancouver

arXiv.org Artificial Intelligence

Science meets Engineering in Deep Learning took place in Vancouver as part of the Workshop section of NeurIPS 2019. As organizers of the workshop, we created the following report in an attempt to isolate emerging topics and recurring themes that have been presented throughout the event. Deep learning can still be a complex mix of art and engineering despite its tremendous success in recent years. The workshop aimed at gathering people across the board to address seemingly contrasting challenges in the problems they are working on. As part of the call for the workshop, particular attention has been given to the interdependence of architecture, data, and optimization that gives rise to an enormous landscape of design and performance intricacies that are not well-understood. This year, our goal was to emphasize the following directions in our community: (i) identify obstacles in the way to better models and algorithms; (ii) identify the general trends from which we would like to build scientific and potentially theoretical understanding; and (iii) the rigorous design of scientific experiments and experimental protocols whose purpose is to resolve and pinpoint the origin of mysteries while ensuring reproducibility and robustness of conclusions. In the event, these topics emerged and were broadly discussed, matching our expectations and paving the way for new studies in these directions. While we acknowledge that the text is naturally biased as it comes through our lens, here we present an attempt to do a fair job of highlighting the outcome of the workshop.


Neural Multisensory Scene Inference

Neural Information Processing Systems

For embodied agents to infer representations of the underlying 3D physical world they inhabit, they should efficiently combine multisensory cues from numerous trials, e.g., by looking at and touching objects. Despite its importance, multisensory 3D scene representation learning has received less attention compared to the unimodal setting. In this paper, we propose the Generative Multisensory Network (GMN) for learning latent representations of 3D scenes which are partially observable through multiple sensory modalities. We also introduce a novel method, called the Amortized Product-of-Experts, to improve the computational efficiency and the robustness to unseen combinations of modalities at test time. Experimental results demonstrate that the proposed model can efficiently infer robust modality-invariant 3D-scene representations from arbitrary combinations of modalities and perform accurate cross-modal generation.


Neural Multisensory Scene Inference

arXiv.org Machine Learning

For embodied agents to infer representations of the underlying 3D physical world they inhabit, they should efficiently combine multisensory cues from numerous trials, e.g., by looking at and touching objects. Despite its importance, multisensory 3D scene representation learning has received less attention compared to the unimodal setting. In this paper, we propose the Generative Multisensory Network (GMN) for learning latent representations of 3D scenes which are partially observable through multiple sensory modalities. We also introduce a novel method, called the Amortized Product-of-Experts, to improve the computational efficiency and the robustness to unseen combinations of modalities at test time. Experimental results demonstrate that the proposed model can efficiently infer robust modality-invariant 3D-scene representations from arbitrary combinations of modalities and perform accurate cross-modal generation. To perform this exploration, we also develop the Multisensory Embodied 3D-Scene Environment (MESE).


Fine-grained zero-shot recognition with metric rescaling

arXiv.org Machine Learning

We address the problem of learning fine-grained cross-modal representations. We propose an instance-based deep metric learning approach in joint visual and textual space. On top of that, we derive a metric rescaling approach that solves a very common problem in the generalized zero-shot learning setting, i.e., classifying test images from unseen classes as one of the classes seen during training. We evaluate our approach on two fine-grained zero-shot learning datasets: CUB and FLOWERS. We find that on the generalized zero-shot classification task the proposed approach consistently outperforms the existing approaches on both datasets. We demonstrate that the proposed approach, notwithstanding its simplicity of implementation and training, is superior to all the recent state-of-the-art methods of which we are aware that use the same evaluation framework.