Rossit, Julien
Admissibility in Strength-based Argumentation: Complexity and Algorithms (Extended Version with Proofs)
Bacquey, Yohann, Mailly, Jean-Guy, Moraitis, Pavlos, Rossit, Julien
Recently, Strength-based Argumentation Frameworks (StrAFs) have been proposed to model situations where some quantitative strength is associated with arguments. In this setting, the notion of accrual corresponds to sets of arguments that collectively attack an argument. Some semantics have already been defined, which are sensitive to the existence of accruals that collectively defeat their target, while their individual elements cannot. However, until now, only the surface of this framework and semantics have been studied. Indeed, the existing literature focuses on the adaptation of the stable semantics to StrAFs. In this paper, we push forward the study and investigate the adaptation of admissibility-based semantics. Especially, we show that the strong admissibility defined in the literature does not satisfy a desirable property, namely Dung's fundamental lemma. We therefore propose an alternative definition that induces semantics that behave as expected. We then study computational issues for these new semantics, in particular we show that complexity of reasoning is similar to the complexity of the corresponding decision problems for standard argumentation frameworks in almost all cases. We then propose a translation in pseudo-Boolean constraints for computing (strong and weak) extensions. We conclude with an experimental evaluation of our approach which shows in particular that it scales up well for solving the problem of providing one extension as well as enumerating them all.
Design and Results of ICCMA 2021
Lagniez, Jean-Marie, Lonca, Emmanuel, Mailly, Jean-Guy, Rossit, Julien
Since 2015, the International Competition on Computational Models of Argumentation (ICCMA) provides a systematic comparison of the different algorithms for solving some classical reasoning problems in the domain of abstract argumentation. This paper discusses the design of the Fourth International Competition on Computational Models of Argumentation. We describe the rules of the competition and the benchmark selection method that we used. After a brief presentation of the competitors, we give an overview of the results.
Stability in Abstract Argumentation
Mailly, Jean-Guy, Rossit, Julien
The notion of stability in a structured argumentation setup characterizes situations where the acceptance status associated with a given literal will not be impacted by any future evolution of this setup. In this paper, we abstract away from the logical structure of arguments, and we transpose this notion of stability to the context of Dungean argumentation frameworks. In particular, we show how this problem can be translated into reasoning with Argument-Incomplete AFs. Then we provide preliminary complexity results for stability under four prominent semantics, in the case of both credulous and skeptical reasoning. Finally, we illustrate to what extent this notion can be useful with an application to argument-based negotiation.
Rationalisation of Profiles of Abstract Argumentation Frameworks: Characterisation and Complexity
Airiau, Stéphane, Bonzon, Elise, Endriss, Ulle, Maudet, Nicolas, Rossit, Julien
Different agents may have different points of view. Following a popular approach in the artificial intelligence literature, this can be modelled by means of different abstract argumentation frameworks, each consisting of a set of arguments the agent is contemplating and a binary attack-relation between them. A question arising in this context is whether the diversity of views observed in such a profile of argumentation frameworks is consistent with the assumption that every individual argumentation framework is induced by a combination of, first, some basic factual attack-relation between the arguments and, second, the personal preferences of the agent concerned regarding the moral or social values the arguments under scrutiny relate to. We treat this question of rationalisability of a profile as an algorithmic problem and identify tractable and intractable cases. In doing so, we distinguish different constraints on admissible rationalisations, e.g., concerning the types of preferences used or the number of distinct values involved. We also distinguish two different semantics for rationalisability, which differ in the assumptions made on how agents treat attacks between arguments they do not report. This research agenda, bringing together ideas from abstract argumentation and social choice, is useful for understanding what types of profiles can reasonably be expected to occur in a multiagent system.