Goto

Collaborating Authors

 Rossiello, Gaetano


Rationalization Models for Text-to-SQL

arXiv.org Artificial Intelligence

We introduce a framework for generating Chain-of-Thought (CoT) rationales to enhance text-to-SQL model fine-tuning. These rationales consist of intermediate SQL statements and explanations, serving as incremental steps toward constructing the final SQL query. The process begins with manually annotating a small set of examples, which are then used to prompt a large language model in an iterative, dynamic few-shot knowledge distillation procedure from a teacher model. A rationalization model is subsequently trained on the validated decomposed queries, enabling extensive synthetic CoT annotations for text-to-SQL datasets. To evaluate the approach, we fine-tune small language models with and without these rationales on the BIRD dataset. Results indicate that step-by-step query generation improves execution accuracy, especially for moderately and highly complex queries, while also enhancing explainability.


Extractive Schema Linking for Text-to-SQL

arXiv.org Artificial Intelligence

Text-to-SQL is emerging as a practical interface for real world databases. The dominant paradigm for Text-to-SQL is cross-database or schema-independent, supporting application schemas unseen during training. The schema of a database defines the tables, columns, column types and foreign key connections between tables. Real world schemas can be large, containing hundreds of columns, but for any particular query only a small fraction will be relevant. Placing the entire schema in the prompt for an LLM can be impossible for models with smaller token windows and expensive even when the context window is large enough to allow it. Even apart from computational considerations, the accuracy of the model can be improved by focusing the SQL generation on only the relevant portion of the database. Schema linking identifies the portion of the database schema useful for the question. Previous work on schema linking has used graph neural networks, generative LLMs, and cross encoder classifiers. We introduce a new approach to adapt decoder-only LLMs to schema linking that is both computationally more efficient and more accurate than the generative approach. Additionally our extractive approach permits fine-grained control over the precision-recall trade-off for schema linking.


Retrieval-Based Transformer for Table Augmentation

arXiv.org Artificial Intelligence

Data preparation, also called data wrangling, is considered one of the most expensive and time-consuming steps when performing analytics or building machine learning models. Preparing data typically involves collecting and merging data from complex heterogeneous, and often large-scale data sources, such as data lakes. In this paper, we introduce a novel approach toward automatic data wrangling in an attempt to alleviate the effort of end-users, e.g. data analysts, in structuring dynamic views from data lakes in the form of tabular data. We aim to address table augmentation tasks, including row/column population and data imputation. Given a corpus of tables, we propose a retrieval augmented self-trained transformer model. Our self-learning strategy consists in randomly ablating tables from the corpus and training the retrieval-based model to reconstruct the original values or headers given the partial tables as input. We adopt this strategy to first train the dense neural retrieval model encoding table-parts to vectors, and then the end-to-end model trained to perform table augmentation tasks. We test on EntiTables, the standard benchmark for table augmentation, as well as introduce a new benchmark to advance further research: WebTables. Our model consistently and substantially outperforms both supervised statistical methods and the current state-of-the-art transformer-based models.


KnowGL: Knowledge Generation and Linking from Text

arXiv.org Artificial Intelligence

We propose KnowGL, a tool that allows converting text into structured relational data represented as a set of ABox assertions compliant with the TBox of a given Knowledge Graph (KG), such as Wikidata. We address this problem as a sequence generation task by leveraging pre-trained sequence-to-sequence language models, e.g. BART. Given a sentence, we fine-tune such models to detect pairs of entity mentions and jointly generate a set of facts consisting of the full set of semantic annotations for a KG, such as entity labels, entity types, and their relationships. To showcase the capabilities of our tool, we build a web application consisting of a set of UI widgets that help users to navigate through the semantic data extracted from a given input text. We make the KnowGL model available at https://huggingface.co/ibm/knowgl-large.


Applying a Generic Sequence-to-Sequence Model for Simple and Effective Keyphrase Generation

arXiv.org Artificial Intelligence

In recent years, a number of keyphrase generation (KPG) approaches were proposed consisting of complex model architectures, dedicated training paradigms and decoding strategies. In this work, we opt for simplicity and show how a commonly used seq2seq language model, BART, can be easily adapted to generate keyphrases from the text in a single batch computation using a simple training procedure. Empirical results on five benchmarks show that our approach is as good as the existing state-of-the-art KPG systems, but using a much simpler and easy to deploy framework.


Semantic Answer Type and Relation Prediction Task (SMART 2021)

arXiv.org Artificial Intelligence

Each year the International Semantic Web Conference organizes a set of Semantic Web Challenges to establish competitions that will advance state-of-the-art solutions in some problem domains. The Semantic Answer Type and Relation Prediction Task (SMART) task is one of the ISWC 2021 Semantic Web challenges. This is the second year of the challenge after a successful SMART 2020 at ISWC 2020. This year's version focuses on two sub-tasks that are very important to Knowledge Base Question Answering (KBQA): Answer Type Prediction and Relation Prediction. Question type and answer type prediction can play a key role in knowledge base question answering systems providing insights about the expected answer that are helpful to generate correct queries or rank the answer candidates. More concretely, given a question in natural language, the first task is, to predict the answer type using a target ontology (e.g., DBpedia or Wikidata. Similarly, the second task is to identify relations in the natural language query and link them to the relations in a target ontology. This paper discusses the task descriptions, benchmark datasets, and evaluation metrics. For more information, please visit https://smart-task.github.io/2021/.


A Two-Stage Approach towards Generalization in Knowledge Base Question Answering

arXiv.org Artificial Intelligence

Most existing approaches for Knowledge Base Question Answering (KBQA) focus on a specific underlying knowledge base either because of inherent assumptions in the approach, or because evaluating it on a different knowledge base requires non-trivial changes. However, many popular knowledge bases share similarities in their underlying schemas that can be leveraged to facilitate generalization across knowledge bases. To achieve this generalization, we introduce a KBQA framework based on a 2-stage architecture that explicitly separates semantic parsing from the knowledge base interaction, facilitating transfer learning across datasets and knowledge graphs. We show that pretraining on datasets with a different underlying knowledge base can nevertheless provide significant performance gains and reduce sample complexity. Our approach achieves comparable or state-of-the-art performance for LC-QuAD (DBpedia), WebQSP (Freebase), SimpleQuestions (Wikidata) and MetaQA (Wikimovies-KG).


Robust Retrieval Augmented Generation for Zero-shot Slot Filling

arXiv.org Artificial Intelligence

Automatically inducing high quality knowledge graphs from a given collection of documents still remains a challenging problem in AI. One way to make headway for this problem is through advancements in a related task known as slot filling. In this task, given an entity query in form of [Entity, Slot, ?], a system is asked to fill the slot by generating or extracting the missing value exploiting evidence extracted from relevant passage(s) in the given document collection. The recent works in the field try to solve this task in an end-to-end fashion using retrieval-based language models. In this paper, we present a novel approach to zero-shot slot filling that extends dense passage retrieval with hard negatives and robust training procedures for retrieval augmented generation models. Our model reports large improvements on both T-REx and zsRE slot filling datasets, improving both passage retrieval and slot value generation, and ranking at the top-1 position in the KILT leaderboard. Moreover, we demonstrate the robustness of our system showing its domain adaptation capability on a new variant of the TACRED dataset for slot filling, through a combination of zero/few-shot learning. We release the source code and pre-trained models.


Generative Relation Linking for Question Answering over Knowledge Bases

arXiv.org Artificial Intelligence

The goal of Knowledge Base Question Answering (KBQA) systems is to transform natural language questions into SPARQL queries that are then used to retrieve answer(s) from the target Knowledge Base (KB). Relation linking is a crucial component in building KBQA systems. It identifies the relations expressed in the question and maps them to the corresponding KB relations. For example, in Figure 1, to translate the question "What is the owning organization of the Ford Kansas City Assembly Plant and also the builder of the Ford Y-block engine?" into its corresponding SPARQL query, it is necessary to determine the two KB relations: dbo:owningOrganisation, dbo:manufacturer. Relation linking has proven to be a challenging problem, with state-of-the-art approaches performing less than 50% F1 on the majority of the datasets Sakor et al. [2019], Lin et al. [2020], Mihindukulasooriya et al. [2020], thus making it a bottleneck for the overall performance of KBQA systems. The challenges primarily arise from the following factors: 1) relations in text and the KB are often lexicalized differently (implicit mentions); 2) questions with multiple relations and 3) training data is often limited. While past approaches have tried to tackle these issues by either creating hand-coded rules Sakor et al. [2020], or by using semantic parsing Mihindukulasooriya et al. [2020], these challenges can be naturally addressed using the latest advances in auto-regressive sequence-to-sequence models (seq2seq) which have been shown to perform surprisingly well on tasks such as question answering Lewis et al. [2020a], slot filling Petroni et al. [2020] or entity linking Cao et al. [2020], in a generative fashion. However, seq2seq models have not yet been explored for relation linking, particularly in the context of KBQA. In this work, we introduce GenRL, a novel generative approach for relation linking that capitalises on pre-trained seq2seq models.


Zero-shot Slot Filling with DPR and RAG

arXiv.org Artificial Intelligence

The ability to automatically extract Knowledge Graphs (KG) from a given collection of documents is a long-standing problem in Artificial Intelligence. One way to assess this capability is through the task of slot filling. Given an entity query in form of [Entity, Slot, ?], a system is asked to `fill' the slot by generating or extracting the missing value from a relevant passage or passages. This capability is crucial to create systems for automatic knowledge base population, which is becoming in ever-increasing demand, especially in enterprise applications. Recently, there has been a promising direction in evaluating language models in the same way we would evaluate knowledge bases, and the task of slot filling is the most suitable to this intent. The recent advancements in the field try to solve this task in an end-to-end fashion using retrieval-based language models. Models like Retrieval Augmented Generation (RAG) show surprisingly good performance without involving complex information extraction pipelines. However, the results achieved by these models on the two slot filling tasks in the KILT benchmark are still not at the level required by real-world information extraction systems. In this paper, we describe several strategies we adopted to improve the retriever and the generator of RAG in order to make it a better slot filler. Our KGI0 system (available at https://github.com/IBM/retrieve-write-slot-filling) reached the top-1 position on the KILT leaderboard on both T-REx and zsRE dataset with a large margin.