Goto

Collaborating Authors

 Rossi, F.


Uncertainty in Soft Temporal Constraint Problems:A General Framework and Controllability Algorithms forThe Fuzzy Case

arXiv.org Artificial Intelligence

In real-life temporal scenarios, uncertainty and preferences are often essential and coexisting aspects. We present a formalism where quantitative temporal constraints with both preferences and uncertainty can be defined. We show how three classical notions of controllability (that is, strong, weak, and dynamic), which have been developed for uncertain temporal problems, can be generalized to handle preferences as well. After defining this general framework, we focus on problems where preferences follow the fuzzy approach, and with properties that assure tractability. For such problems, we propose algorithms to check the presence of the controllability properties. In particular, we show that in such a setting dealing simultaneously with preferences and uncertainty does not increase the complexity of controllability testing. We also develop a dynamic execution algorithm, of polynomial complexity, that produces temporal plans under uncertainty that are optimal with respect to fuzzy preferences.


Local search for stable marriage problems

arXiv.org Artificial Intelligence

The stable marriage (SM) problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order) over the members of the other sex. Solving a SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI) where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these lists, an we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We evaluate empirically our algorithm for SM problems by measuring its runtime behaviour and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behaviour and its ability to find a maximum cardinality stable marriage.For SM problems, the number of steps of our algorithm grows only as O(nlog(n)), and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages.Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size despite the NP-hardness of this problem.