Ross, David
MALT Diffusion: Memory-Augmented Latent Transformers for Any-Length Video Generation
Yu, Sihyun, Hahn, Meera, Kondratyuk, Dan, Shin, Jinwoo, Gupta, Agrim, Lezama, José, Essa, Irfan, Ross, David, Huang, Jonathan
Diffusion models are successful for synthesizing high-quality videos but are limited to generating short clips (e.g., 2-10 seconds). Synthesizing sustained footage (e.g. over minutes) still remains an open research question. In this paper, we propose MALT Diffusion (using Memory-Augmented Latent Transformers), a new diffusion model specialized for long video generation. MALT Diffusion (or just MALT) handles long videos by subdividing them into short segments and doing segment-level autoregressive generation. To achieve this, we first propose recurrent attention layers that encode multiple segments into a compact memory latent vector; by maintaining this memory vector over time, MALT is able to condition on it and continuously generate new footage based on a long temporal context. We also present several training techniques that enable the model to generate frames over a long horizon with consistent quality and minimal degradation. We validate the effectiveness of MALT through experiments on long video benchmarks. We first perform extensive analysis of MALT in long-contextual understanding capability and stability using popular long video benchmarks. For example, MALT achieves an FVD score of 220.4 on 128-frame video generation on UCF-101, outperforming the previous state-of-the-art of 648.4. Finally, we explore MALT's capabilities in a text-to-video generation setting and show that it can produce long videos compared with recent techniques for long text-to-video generation.
VideoPoet: A Large Language Model for Zero-Shot Video Generation
Kondratyuk, Dan, Yu, Lijun, Gu, Xiuye, Lezama, José, Huang, Jonathan, Hornung, Rachel, Adam, Hartwig, Akbari, Hassan, Alon, Yair, Birodkar, Vighnesh, Cheng, Yong, Chiu, Ming-Chang, Dillon, Josh, Essa, Irfan, Gupta, Agrim, Hahn, Meera, Hauth, Anja, Hendon, David, Martinez, Alonso, Minnen, David, Ross, David, Schindler, Grant, Sirotenko, Mikhail, Sohn, Kihyuk, Somandepalli, Krishna, Wang, Huisheng, Yan, Jimmy, Yang, Ming-Hsuan, Yang, Xuan, Seybold, Bryan, Jiang, Lu
We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/
UnLoc: A Unified Framework for Video Localization Tasks
Yan, Shen, Xiong, Xuehan, Nagrani, Arsha, Arnab, Anurag, Wang, Zhonghao, Ge, Weina, Ross, David, Schmid, Cordelia
While large-scale image-text pretrained models such as CLIP have been used for multiple video-level tasks on trimmed videos, their use for temporal localization in untrimmed videos is still a relatively unexplored task. We design a new approach for this called UnLoc, which uses pretrained image and text towers, and feeds tokens to a video-text fusion model. The output of the fusion module are then used to construct a feature pyramid in which each level connects to a head to predict a per-frame relevancy score and start/end time displacements. Unlike previous works, our architecture enables Moment Retrieval, Temporal Localization, and Action Segmentation with a single stage model, without the need for action proposals, motion based pretrained features or representation masking. Unlike specialized models, we achieve state of the art results on all three different localization tasks with a unified approach. Code will be available at: \url{https://github.com/google-research/scenic}.