Rosenbaum, Clemens
GistScore: Learning Better Representations for In-Context Example Selection with Gist Bottlenecks
Gupta, Shivanshu, Rosenbaum, Clemens, Elenberg, Ethan R.
Large language models (LLMs) have the ability to perform in-context learning (ICL) of new tasks by conditioning on prompts comprising a few task examples. This work studies the problem of selecting the best examples given a candidate pool to improve ICL performance on given a test input. Existing approaches either require training with feedback from a much larger LLM or are computationally expensive. We propose a novel metric, GistScore, based on Example Gisting, a novel approach for training example retrievers for ICL using an attention bottleneck via Gisting, a recent technique for compressing task instructions. To tradeoff performance with ease of use, we experiment with both fine-tuning gist models on each dataset and multi-task training a single model on a large collection of datasets. On 21 diverse datasets spanning 9 tasks, we show that our fine-tuned models get state-of-the-art ICL performance with 20% absolute average gain over off-the-shelf retrievers and 7% over the best prior methods. Our multi-task model generalizes well out-of-the-box to new task categories, datasets, and prompt templates with retrieval speeds that are consistently thousands of times faster than the best prior training-free method.
On the Role of Weight Sharing During Deep Option Learning
Riemer, Matthew, Cases, Ignacio, Rosenbaum, Clemens, Liu, Miao, Tesauro, Gerald
The options framework is a popular approach for building temporally extended actions in reinforcement learning. In particular, the option-critic architecture provides general purpose policy gradient theorems for learning actions from scratch that are extended in time. However, past work makes the key assumption that each of the components of option-critic has independent parameters. In this work we note that while this key assumption of the policy gradient theorems of option-critic holds in the tabular case, it is always violated in practice for the deep function approximation setting. We thus reconsider this assumption and consider more general extensions of option-critic and hierarchical option-critic training that optimize for the full architecture with each update. It turns out that not assuming parameter independence challenges a belief in prior work that training the policy over options can be disentangled from the dynamics of the underlying options. In fact, learning can be sped up by focusing the policy over options on states where options are actually likely to terminate. We put our new algorithms to the test in application to sample efficient learning of Atari games, and demonstrate significantly improved stability and faster convergence when learning long options.
Routing Networks and the Challenges of Modular and Compositional Computation
Rosenbaum, Clemens, Cases, Ignacio, Riemer, Matthew, Klinger, Tim
Compositionality is a key strategy for addressing combinatorial complexity and the curse of dimensionality. Recent work has shown that compositional solutions can be learned and offer substantial gains across a variety of domains, including multi-task learning, language modeling, visual question answering, machine comprehension, and others. However, such models present unique challenges during training when both the module parameters and their composition must be learned jointly. In this paper, we identify several of these issues and analyze their underlying causes. Our discussion focuses on routing networks, a general approach to this problem, and examines empirically the interplay of these challenges and a variety of design decisions. In particular, we consider the effect of how the algorithm decides on module composition, how the algorithm updates the modules, and if the algorithm uses regularization.