Roncone, Alessandro
Towards Super-Nominal Payload Handling: Inverse Dynamics Analysis for Multi-Skill Robotic Manipulation
Pasricha, Anuj, Roncone, Alessandro
Motion planning for articulated robots has traditionally been governed by algorithms that operate within manufacturer-defined payload limits. Our empirical analysis of the Franka Emika Panda robot demonstrates that this approach unnecessarily restricts the robot's dynamically-reachable task space. These results establish an expanded operational envelope for such robots, showing that they can handle payloads of more than twice their rated capacity. Additionally, our preliminary findings indicate that integrating non-prehensile motion primitives with grasping-based manipulation has the potential to further increase the success rates of manipulation tasks involving payloads exceeding nominal limits.
A Sensor Position Localization Method for Flexible, Non-Uniform Capacitive Tactile Sensor Arrays
Kohlbrenner, Carson, Escobedo, Caleb, Nechyporenko, Nataliya, Roncone, Alessandro
Tactile sensing is used in robotics to obtain real-time feedback during physical interactions. Fine object manipulation is a robotic application that benefits from a high density of sensors to accurately estimate object pose, whereas a low sensing resolution is sufficient for collision detection. Introducing variable sensing resolution into a single tactile sensing array can increase the range of tactile use cases, but also invokes challenges in localizing internal sensor positions. In this work, we present a mutual capacitance sensor array with variable sensor density, VARSkin, along with a localization method that determines the position of each sensor in the non-uniform array. When tested on two distinct artificial skin patches with concealed sensor layouts, our method achieves a localization accuracy within $\pm 2mm$. We also provide a comprehensive error analysis, offering strategies for further precision improvement.
GenTact Toolbox: A Computational Design Pipeline to Procedurally Generate Context-Driven 3D Printed Whole-Body Tactile Skins
Kohlbrenner, Carson, Escobedo, Caleb, Bae, S. Sandra, Dickhans, Alexander, Roncone, Alessandro
Abstract-- Developing whole-body tactile skins for robots remains a challenging task, as existing solutions often prioritize modular, one-size-fits-all designs, which, while versatile, fail to account for the robot's specific shape and the unique demands of its operational context. In this work, we introduce the GenTact Toolbox, a computational pipeline for creating versatile whole-body tactile skins tailored to both robot shape and application domain. Our pipeline includes procedural mesh generation for conforming to a robot's topology, task-driven simulation to refine sensor distribution, and multi-material 3D printing for shape-agnostic fabrication. This work represents a shift from "one-size-fits-all" tactile sensors toward context-driven, highly adaptable designs that can be customized for a wide range of robotic systems and applications. Whole-body tactile skins are sensors designed to give a robot the sense of touch over the full integration levels because it requires manual assembly and surface of its body.
A Machine Learning Approach to Contact Localization in Variable Density Three-Dimensional Tactile Artificial Skin
Kohlbrenner, Carson, Murray, Mitchell, Zhang, Yutong, Escobedo, Caleb, Dunnington, Thomas, Stevenson, Nolan, Correll, Nikolaus, Roncone, Alessandro
Estimating the location of contact is a primary function of artificial tactile sensing apparatuses that perceive the environment through touch. Existing contact localization methods use flat geometry and uniform sensor distributions as a simplifying assumption, limiting their ability to be used on 3D surfaces with variable density sensing arrays. This paper studies contact localization on an artificial skin embedded with mutual capacitance tactile sensors, arranged non-uniformly in an unknown distribution along a semi-conical 3D geometry. A fully connected neural network is trained to localize the touching points on the embedded tactile sensors. The studied online model achieves a localization error of $5.7 \pm 3.0$ mm. This research contributes a versatile tool and robust solution for contact localization that is ambiguous in shape and internal sensor distribution.
Exploring How Non-Prehensile Manipulation Expands Capability in Robots Experiencing Multi-Joint Failure
Briscoe-Martinez, Gilberto, Pasricha, Anuj, Abderezaei, Ava, Chaganti, Santosh, Vajrala, Sarath Chandra, Popuri, Sri Kanth, Roncone, Alessandro
This work explores non-prehensile manipulation (NPM) and whole-body interaction as strategies for enabling robotic manipulators to conduct manipulation tasks despite experiencing locked multi-joint (LMJ) failures. LMJs are critical system faults where two or more joints become inoperable; they impose constraints on the robot's configuration and control spaces, consequently limiting the capability and reach of a prehensile-only approach. This approach involves three components: i) modeling the failure-constrained workspace of the robot, ii) generating a kinodynamic map of NPM actions within this workspace, and iii) a manipulation action planner that uses a sim-in-the-loop approach to select the best actions to take from the kinodynamic map. The experimental evaluation shows that our approach can increase the failure-constrained reachable area in LMJ cases by 79%. Further, it demonstrates the ability to complete real-world manipulation with up to 88.9% success when the end-effector is unusable and up to 100% success when it is usable.
PokeRRT: Poking as a Skill and Failure Recovery Tactic for Planar Non-Prehensile Manipulation
Pasricha, Anuj, Tung, Yi-Shiuan, Hayes, Bradley, Roncone, Alessandro
In this work, we introduce PokeRRT, a novel motion planning algorithm that demonstrates poking as an effective non-prehensile manipulation skill to enable fast manipulation of objects and increase the size of a robot's reachable workspace. We showcase poking as a failure recovery tactic used synergistically with pick-and-place for resiliency in cases where pick-and-place initially fails or is unachievable. Our experiments demonstrate the efficiency of the proposed framework in planning object trajectories using poking manipulation in uncluttered and cluttered environments. In addition to quantitatively and qualitatively demonstrating the adaptability of PokeRRT to different scenarios in both simulation and real-world settings, our results show the advantages of poking over pushing and grasping in terms of success rate and task time.
The Virtues of Laziness: Multi-Query Kinodynamic Motion Planning with Lazy Methods
Pasricha, Anuj, Roncone, Alessandro
In this work, we introduce LazyBoE, a multi-query method for kinodynamic motion planning with forward propagation. This algorithm allows for the simultaneous exploration of a robot's state and control spaces, thereby enabling a wider suite of dynamic tasks in real-world applications. Our contributions are three-fold: i) a method for discretizing the state and control spaces to amortize planning times across multiple queries; ii) lazy approaches to collision checking and propagation of control sequences that decrease the cost of physics-based simulation; and iii) LazyBoE, a robust kinodynamic planner that leverages these two contributions to produce dynamically-feasible trajectories. The proposed framework not only reduces planning time but also increases success rate in comparison to previous approaches.
ROMA-iQSS: An Objective Alignment Approach via State-Based Value Learning and ROund-Robin Multi-Agent Scheduling
Lin, Chi-Hui, Koh, Joewie J., Roncone, Alessandro, Chen, Lijun
Effective multi-agent collaboration is imperative for solving complex, distributed problems. In this context, two key challenges must be addressed: first, autonomously identifying optimal objectives for collective outcomes; second, aligning these objectives among agents. Traditional frameworks, often reliant on centralized learning, struggle with scalability and efficiency in large multi-agent systems. To overcome these issues, we introduce a decentralized state-based value learning algorithm that enables agents to independently discover optimal states. Furthermore, we introduce a novel mechanism for multi-agent interaction, wherein less proficient agents follow and adopt policies from more experienced ones, thereby indirectly guiding their learning process. Our theoretical analysis shows that our approach leads decentralized agents to an optimal collective policy. Empirical experiments further demonstrate that our method outperforms existing decentralized state-based and action-based value learning strategies by effectively identifying and aligning optimal objectives.
Workspace Optimization Techniques to Improve Prediction of Human Motion During Human-Robot Collaboration
Tung, Yi-Shiuan, Luebbers, Matthew B., Roncone, Alessandro, Hayes, Bradley
Understanding human intentions is critical for safe and effective human-robot collaboration. While state of the art methods for human goal prediction utilize learned models to account for the uncertainty of human motion data, that data is inherently stochastic and high variance, hindering those models' utility for interactions requiring coordination, including safety-critical or close-proximity tasks. Our key insight is that robot teammates can deliberately configure shared workspaces prior to interaction in order to reduce the variance in human motion, realizing classifier-agnostic improvements in goal prediction. In this work, we present an algorithmic approach for a robot to arrange physical objects and project "virtual obstacles" using augmented reality in shared human-robot workspaces, optimizing for human legibility over a given set of tasks. We compare our approach against other workspace arrangement strategies using two human-subjects studies, one in a virtual 2D navigation domain and the other in a live tabletop manipulation domain involving a robotic manipulator arm. We evaluate the accuracy of human motion prediction models learned from each condition, demonstrating that our workspace optimization technique with virtual obstacles leads to higher robot prediction accuracy using less training data.
HARMONIOUS -- Human-like reactive motion control and multimodal perception for humanoid robots
Rozlivek, Jakub, Roncone, Alessandro, Pattacini, Ugo, Hoffmann, Matej
For safe and effective operation of humanoid robots in human-populated environments, the problem of commanding a large number of Degrees of Freedom (DoF) while simultaneously considering dynamic obstacles and human proximity has still not been solved. We present a new reactive motion controller that commands two arms of a humanoid robot and three torso joints (17 DoF in total). We formulate a quadratic program that seeks joint velocity commands respecting multiple constraints while minimizing the magnitude of the velocities. We introduce a new unified treatment of obstacles that dynamically maps visual and proximity (pre-collision) and tactile (post-collision) obstacles as additional constraints to the motion controller, in a distributed fashion over surface of the upper-body of the iCub robot (with 2000 pressure-sensitive receptors). The bio-inspired controller: (i) produces human-like minimum jerk movement profiles; (ii) gives rise to a robot with whole-body visuo-tactile awareness, resembling peripersonal space representations. The controller was extensively experimentally validated, including a physical human-robot interaction scenario.