Roebel, Axel
Lina-Speech: Gated Linear Attention is a Fast and Parameter-Efficient Learner for text-to-speech synthesis
Lemerle, Théodor, Vanderbyl, Harrison, Srivastav, Vaibhav, Obin, Nicolas, Roebel, Axel
Neural codec language models have achieved state-of-the-art performance in text-to-speech (TTS) synthesis, leveraging scalable architectures like autoregressive transformers and large-scale speech datasets. By framing voice cloning as a prompt continuation task, these models excel at cloning voices from short audio samples. However, this approach is limited in its ability to handle numerous or lengthy speech excerpts, since the concatenation of source and target speech must fall within the maximum context length which is determined during training. In this work, we introduce Lina-Speech, a model that replaces traditional self-attention mechanisms with emerging recurrent architectures like Gated Linear Attention (GLA). Building on the success of initial-state tuning on RWKV, we extend this technique to voice cloning, enabling the use of multiple speech samples and full utilization of the context window in synthesis. This approach is fast, easy to deploy, and achieves performance comparable to fine-tuned baselines when the dataset size ranges from 3 to 15 minutes. Notably, Lina-Speech matches or outperforms state-of-the-art baseline models, including some with a parameter count up to four times higher or trained in an end-to-end style. We release our code and checkpoints. Audio samples are available at https://theodorblackbird.github.io/blog/demo_lina/.
Small-E: Small Language Model with Linear Attention for Efficient Speech Synthesis
Lemerle, Théodor, Obin, Nicolas, Roebel, Axel
Recent advancements in text-to-speech (TTS) powered by language models have showcased remarkable capabilities in achieving naturalness and zero-shot voice cloning. Notably, the decoder-only transformer is the prominent architecture in this domain. However, transformers face challenges stemming from their quadratic complexity in sequence length, impeding training on lengthy sequences and resource-constrained hardware. Moreover they lack specific inductive bias with regards to the monotonic nature of TTS alignments. In response, we propose to replace transformers with emerging recurrent architectures and introduce specialized cross-attention mechanisms for reducing repeating and skipping issues. Consequently our architecture can be efficiently trained on long samples and achieve state-of-the-art zero-shot voice cloning against baselines of comparable size. Our implementation and demos are available at https://github.com/theodorblackbird/lina-speech.
AI (r)evolution -- where are we heading? Thoughts about the future of music and sound technologies in the era of deep learning
Bindi, Giovanni, Demerlé, Nils, Diaz, Rodrigo, Genova, David, Golvet, Aliénor, Hayes, Ben, Huang, Jiawen, Liu, Lele, Martos, Vincent, Nabi, Sarah, Pelinski, Teresa, Renault, Lenny, Sarkar, Saurjya, Sarmento, Pedro, Vahidi, Cyrus, Wolstanholme, Lewis, Zhang, Yixiao, Roebel, Axel, Bryan-Kinns, Nick, Giavitto, Jean-Louis, Barthet, Mathieu
Artificial Intelligence (AI) technologies such as deep learning are evolving very quickly bringing many changes to our everyday lives. To explore the future impact and potential of AI in the field of music and sound technologies a doctoral day was held between Queen Mary University of London (QMUL, UK) and Sciences et Technologies de la Musique et du Son (STMS, France). Prompt questions about current trends in AI and music were generated by academics from QMUL and STMS. Students from the two institutions then debated these questions. This report presents a summary of the student debates on the topics of: Data, Impact, and the Environment; Responsible Innovation and Creative Practice; Creativity and Bias; and From Tools to the Singularity. The students represent the future generation of AI and music researchers. The academics represent the incumbent establishment. The student debates reported here capture visions, dreams, concerns, uncertainties, and contentious issues for the future of AI and music as the establishment is rightfully challenged by the next generation.
An evaluation framework for event detection using a morphological model of acoustic scenes
Lagrange, Mathieu, Lafay, Grégoire, Rossignol, Mathias, Benetos, Emmanouil, Roebel, Axel
This paper introduces a model of environmental acoustic scenes which adopts a morphological approach by ab-stracting temporal structures of acoustic scenes. To demonstrate its potential, this model is employed to evaluate the performance of a large set of acoustic events detection systems. This model allows us to explicitly control key morphological aspects of the acoustic scene and isolate their impact on the performance of the system under evaluation. Thus, more information can be gained on the behavior of evaluated systems, providing guidance for further improvements. The proposed model is validated using submitted systems from the IEEE DCASE Challenge; results indicate that the proposed scheme is able to successfully build datasets useful for evaluating some aspects the performance of event detection systems, more particularly their robustness to new listening conditions and the increasing level of background sounds.