Rodriguez, Juan Diego
Characterizing the Role of Similarity in the Property Inferences of Language Models
Rodriguez, Juan Diego, Mueller, Aaron, Misra, Kanishka
Property inheritance -- a phenomenon where novel properties are projected from higher level categories (e.g., birds) to lower level ones (e.g., sparrows) -- provides a unique window into how humans organize and deploy conceptual knowledge. It is debated whether this ability arises due to explicitly stored taxonomic knowledge vs. simple computations of similarity between mental representations. How are these mechanistic hypotheses manifested in contemporary language models? In this work, we investigate how LMs perform property inheritance with behavioral and causal representational analysis experiments. We find that taxonomy and categorical similarities are not mutually exclusive in LMs' property inheritance behavior. That is, LMs are more likely to project novel properties from one category to the other when they are taxonomically related and at the same time, highly similar. Our findings provide insight into the conceptual structure of language models and may suggest new psycholinguistic experiments for human subjects.
Lil-Bevo: Explorations of Strategies for Training Language Models in More Humanlike Ways
Govindarajan, Venkata S, Rodriguez, Juan Diego, Bostrom, Kaj, Mahowald, Kyle
We present Lil-Bevo, our submission to the BabyLM Challenge. We pretrained our masked language models with three ingredients: an initial pretraining with music data, training on shorter sequences before training on longer ones, and masking specific tokens to target some of the BLiMP subtasks. Overall, our baseline models performed above chance, but far below the performance levels of larger LLMs trained on more data. We found that training on short sequences performed better than training on longer sequences.Pretraining on music may help performance marginally, but, if so, the effect seems small. Our targeted Masked Language Modeling augmentation did not seem to improve model performance in general, but did seem to help on some of the specific BLiMP tasks that we were targeting (e.g., Negative Polarity Items). Training performant LLMs on small amounts of data is a difficult but potentially informative task. While some of our techniques showed some promise, more work is needed to explore whether they can improve performance more than the modest gains here. Our code is available at https://github.com/venkatasg/Lil-Bevo and out models at https://huggingface.co/collections/venkatasg/babylm-653591cdb66f4bf68922873a
WiCE: Real-World Entailment for Claims in Wikipedia
Kamoi, Ryo, Goyal, Tanya, Rodriguez, Juan Diego, Durrett, Greg
Textual entailment models are increasingly applied in settings like fact-checking, presupposition verification in question answering, or summary evaluation. However, these represent a significant domain shift from existing entailment datasets, and models underperform as a result. We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia. In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim, and a minimal subset of evidence sentences that support each subclaim. To support this, we propose an automatic claim decomposition strategy using GPT-3.5 which we show is also effective at improving entailment models' performance on multiple datasets at test time. Finally, we show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address.
X-PARADE: Cross-Lingual Textual Entailment and Information Divergence across Paragraphs
Rodriguez, Juan Diego, Erk, Katrin, Durrett, Greg
Understanding when two pieces of text convey the same information is a goal touching many subproblems in NLP, including textual entailment and fact-checking. This problem becomes more complex when those two pieces of text are in different languages. Here, we introduce X-PARADE (Cross-lingual Paragraph-level Analysis of Divergences and Entailments), the first cross-lingual dataset of paragraph-level information divergences. Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language, indicating whether a given piece of information is the same, new, or new but can be inferred. This last notion establishes a link with cross-language NLI. Aligned paragraphs are sourced from Wikipedia pages in different languages, reflecting real information divergences observed in the wild. Armed with our dataset, we investigate a diverse set of approaches for this problem, including classic token alignment from machine translation, textual entailment methods that localize their decisions, and prompting of large language models. Our results show that these methods vary in their capability to handle inferable information, but they all fall short of human performance.
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Dhole, Kaustubh D., Gangal, Varun, Gehrmann, Sebastian, Gupta, Aadesh, Li, Zhenhao, Mahamood, Saad, Mahendiran, Abinaya, Mille, Simon, Srivastava, Ashish, Tan, Samson, Wu, Tongshuang, Sohl-Dickstein, Jascha, Choi, Jinho D., Hovy, Eduard, Dusek, Ondrej, Ruder, Sebastian, Anand, Sajant, Aneja, Nagender, Banjade, Rabin, Barthe, Lisa, Behnke, Hanna, Berlot-Attwell, Ian, Boyle, Connor, Brun, Caroline, Cabezudo, Marco Antonio Sobrevilla, Cahyawijaya, Samuel, Chapuis, Emile, Che, Wanxiang, Choudhary, Mukund, Clauss, Christian, Colombo, Pierre, Cornell, Filip, Dagan, Gautier, Das, Mayukh, Dixit, Tanay, Dopierre, Thomas, Dray, Paul-Alexis, Dubey, Suchitra, Ekeinhor, Tatiana, Di Giovanni, Marco, Gupta, Rishabh, Gupta, Rishabh, Hamla, Louanes, Han, Sang, Harel-Canada, Fabrice, Honore, Antoine, Jindal, Ishan, Joniak, Przemyslaw K., Kleyko, Denis, Kovatchev, Venelin, Krishna, Kalpesh, Kumar, Ashutosh, Langer, Stefan, Lee, Seungjae Ryan, Levinson, Corey James, Liang, Hualou, Liang, Kaizhao, Liu, Zhexiong, Lukyanenko, Andrey, Marivate, Vukosi, de Melo, Gerard, Meoni, Simon, Meyer, Maxime, Mir, Afnan, Moosavi, Nafise Sadat, Muennighoff, Niklas, Mun, Timothy Sum Hon, Murray, Kenton, Namysl, Marcin, Obedkova, Maria, Oli, Priti, Pasricha, Nivranshu, Pfister, Jan, Plant, Richard, Prabhu, Vinay, Pais, Vasile, Qin, Libo, Raji, Shahab, Rajpoot, Pawan Kumar, Raunak, Vikas, Rinberg, Roy, Roberts, Nicolas, Rodriguez, Juan Diego, Roux, Claude, S., Vasconcellos P. H., Sai, Ananya B., Schmidt, Robin M., Scialom, Thomas, Sefara, Tshephisho, Shamsi, Saqib N., Shen, Xudong, Shi, Haoyue, Shi, Yiwen, Shvets, Anna, Siegel, Nick, Sileo, Damien, Simon, Jamie, Singh, Chandan, Sitelew, Roman, Soni, Priyank, Sorensen, Taylor, Soto, William, Srivastava, Aman, Srivatsa, KV Aditya, Sun, Tony, T, Mukund Varma, Tabassum, A, Tan, Fiona Anting, Teehan, Ryan, Tiwari, Mo, Tolkiehn, Marie, Wang, Athena, Wang, Zijian, Wang, Gloria, Wang, Zijie J., Wei, Fuxuan, Wilie, Bryan, Winata, Genta Indra, Wu, Xinyi, Wydmański, Witold, Xie, Tianbao, Yaseen, Usama, Yee, M., Zhang, Jing, Zhang, Yue
Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on. In this paper, we present NL-Augmenter, a new participatory Python-based natural language augmentation framework which supports the creation of both transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of natural language tasks. We demonstrate the efficacy of NL-Augmenter by using several of its transformations to analyze the robustness of popular natural language models. The infrastructure, datacards and robustness analysis results are available publicly on the NL-Augmenter repository (\url{https://github.com/GEM-benchmark/NL-Augmenter}).
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Gehrmann, Sebastian, Adewumi, Tosin, Aggarwal, Karmanya, Ammanamanchi, Pawan Sasanka, Anuoluwapo, Aremu, Bosselut, Antoine, Chandu, Khyathi Raghavi, Clinciu, Miruna, Das, Dipanjan, Dhole, Kaustubh D., Du, Wanyu, Durmus, Esin, Dušek, Ondřej, Emezue, Chris, Gangal, Varun, Garbacea, Cristina, Hashimoto, Tatsunori, Hou, Yufang, Jernite, Yacine, Jhamtani, Harsh, Ji, Yangfeng, Jolly, Shailza, Kumar, Dhruv, Ladhak, Faisal, Madaan, Aman, Maddela, Mounica, Mahajan, Khyati, Mahamood, Saad, Majumder, Bodhisattwa Prasad, Martins, Pedro Henrique, McMillan-Major, Angelina, Mille, Simon, van Miltenburg, Emiel, Nadeem, Moin, Narayan, Shashi, Nikolaev, Vitaly, Niyongabo, Rubungo Andre, Osei, Salomey, Parikh, Ankur, Perez-Beltrachini, Laura, Rao, Niranjan Ramesh, Raunak, Vikas, Rodriguez, Juan Diego, Santhanam, Sashank, Sedoc, João, Sellam, Thibault, Shaikh, Samira, Shimorina, Anastasia, Cabezudo, Marco Antonio Sobrevilla, Strobelt, Hendrik, Subramani, Nishant, Xu, Wei, Yang, Diyi, Yerukola, Akhila, Zhou, Jiawei
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. However, due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of corpora and evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the initial release for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate.