Rodolphe Jenatton
Scalable Hyperparameter Transfer Learning
Valerio Perrone, Rodolphe Jenatton, Matthias W. Seeger, Cedric Archambeau
Bayesian optimization (BO) is a model-based approach for gradient-free black-box function optimization, such as hyperparameter optimization. Typically, BO relies on conventional Gaussian process (GP) regression, whose algorithmic complexity is cubic in the number of evaluations. As a result, GP-based BO cannot leverage large numbers of past function evaluations, for example, to warm-start related BO runs. We propose a multi-task adaptive Bayesian linear regression model for transfer learning in BO, whose complexity is linear in the function evaluations: one Bayesian linear regression model is associated to each black-box function optimization problem (or task), while transfer learning is achieved by coupling the models through a shared deep neural net. Experiments show that the neural net learns a representation suitable for warm-starting the black-box optimization problems and that BO runs can be accelerated when the target black-box function (e.g., validation loss) is learned together with other related signals (e.g., training loss). The proposed method was found to be at least one order of magnitude faster than competing methods recently published in the literature.
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone, Huibin Shen, Matthias W. Seeger, Cedric Archambeau, Rodolphe Jenatton
Bayesian optimization (BO) is a successful methodology to optimize black-box functions that are expensive to evaluate. While traditional methods optimize each black-box function in isolation, there has been recent interest in speeding up BO by transferring knowledge across multiple related black-box functions. In this work, we introduce a method to automatically design the BO search space by relying on evaluations of previous black-box functions. We depart from the common practice of defining a set of arbitrary search ranges a priori by considering search space geometries that are learned from historical data. This simple, yet effective strategy can be used to endow many existing BO methods with transfer learning properties. Despite its simplicity, we show that our approach considerably boosts BO by reducing the size of the search space, thus accelerating the optimization of a variety of black-box optimization problems. In particular, the proposed approach combined with random search results in a parameter-free, easy-to-implement, robust hyperparameter optimization strategy. We hope it will constitute a natural baseline for further research attempting to warm-start BO.
Scalable Hyperparameter Transfer Learning
Valerio Perrone, Rodolphe Jenatton, Matthias W. Seeger, Cedric Archambeau
Bayesian optimization (BO) is a model-based approach for gradient-free black-box function optimization, such as hyperparameter optimization. Typically, BO relies on conventional Gaussian process (GP) regression, whose algorithmic complexity is cubic in the number of evaluations. As a result, GP-based BO cannot leverage large numbers of past function evaluations, for example, to warm-start related BO runs. We propose a multi-task adaptive Bayesian linear regression model for transfer learning in BO, whose complexity is linear in the function evaluations: one Bayesian linear regression model is associated to each black-box function optimization problem (or task), while transfer learning is achieved by coupling the models through a shared deep neural net. Experiments show that the neural net learns a representation suitable for warm-starting the black-box optimization problems and that BO runs can be accelerated when the target black-box function (e.g., validation loss) is learned together with other related signals (e.g., training loss). The proposed method was found to be at least one order of magnitude faster than competing methods recently published in the literature.