Goto

Collaborating Authors

 Roberts, Jonathan


Humanity's Last Exam

arXiv.org Artificial Intelligence

Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.


Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are increasingly deployed in real-world applications that demand complex reasoning. To track progress, robust benchmarks are required to evaluate their capabilities beyond superficial pattern recognition. However, current LLM reasoning benchmarks often face challenges such as insufficient interpretability, performance saturation or data contamination. To address these challenges, we introduce GAMEBoT, a gaming arena designed for rigorous and transparent assessment of LLM reasoning capabilities. GAMEBoT decomposes complex reasoning in games into predefined modular subproblems. This decomposition allows us to design a suite of Chain-of-Thought (CoT) prompts that leverage domain knowledge to guide LLMs in addressing these subproblems before action selection. Furthermore, we develop a suite of rule-based algorithms to generate ground truth for these subproblems, enabling rigorous validation of the LLMs' intermediate reasoning steps. This approach facilitates evaluation of both the quality of final actions and the accuracy of the underlying reasoning process. GAMEBoT also naturally alleviates the risk of data contamination through dynamic games and head-to-head LLM competitions. We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics. Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts. Project page: \url{https://visual-ai.github.io/gamebot}


Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?

arXiv.org Artificial Intelligence

As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.


Geometric interpretation of the general POE model for a serial-link robot via conversion into D-H parameterization

arXiv.org Artificial Intelligence

While Product of Exponentials (POE) formula has been gaining increasing popularity in modeling the kinematics of a serial-link robot, the Denavit-Hartenberg (D-H) notation is still the most widely used due to its intuitive and concise geometric interpretation of the robot. This paper has developed an analytical solution to automatically convert a POE model into a D-H model for a robot with revolute, prismatic, and helical joints, which are the complete set of three basic one degree of freedom lower pair joints for constructing a serial-link robot. The conversion algorithm developed can be used in applications such as calibration where it is necessary to convert the D-H model to the POE model for identification and then back to the D-H model for compensation. The equivalence of the two models proved in this paper also benefits the analysis of the identifiability of the kinematic parameters. It is found that the maximum number of identifiable parameters in a general POE model is 5h+4r +2t +n+6 where h, r, t, and n stand for the number of helical, revolute, prismatic, and general joints, respectively. It is also suggested that the identifiability of the base frame and the tool frame in the D-H model is restricted rather than the arbitrary six parameters as assumed previously.


Charting New Territories: Exploring the Geographic and Geospatial Capabilities of Multimodal LLMs

arXiv.org Artificial Intelligence

Multimodal large language models (MLLMs) have shown remarkable capabilities across a broad range of tasks but their knowledge and abilities in the geographic and geospatial domains are yet to be explored, despite potential wide-ranging benefits to navigation, environmental research, urban development, and disaster response. We conduct a series of experiments exploring various vision capabilities of MLLMs within these domains, particularly focusing on the frontier model GPT-4V, and benchmark its performance against open-source counterparts. Our methodology involves challenging these models with a small-scale geographic benchmark consisting of a suite of visual tasks, testing their abilities across a spectrum of complexity. The analysis uncovers not only where such models excel, including instances where they outperform humans, but also where they falter, providing a balanced view of their capabilities in the geographic domain. To enable the comparison and evaluation of future models, our benchmark will be publicly released.


GPT4GEO: How a Language Model Sees the World's Geography

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown remarkable capabilities across a broad range of tasks involving question answering and the generation of coherent text and code. Comprehensively understanding the strengths and weaknesses of LLMs is beneficial for safety, downstream applications and improving performance. In this work, we investigate the degree to which GPT-4 has acquired factual geographic knowledge and is capable of using this knowledge for interpretative reasoning, which is especially important for applications that involve geographic data, such as geospatial analysis, supply chain management, and disaster response. To this end, we design and conduct a series of diverse experiments, starting from factual tasks such as location, distance and elevation estimation to more complex questions such as generating country outlines and travel networks, route finding under constraints and supply chain analysis. We provide a broad characterisation of what GPT-4 (without plugins or Internet access) knows about the world, highlighting both potentially surprising capabilities but also limitations.


SATIN: A Multi-Task Metadataset for Classifying Satellite Imagery using Vision-Language Models

arXiv.org Artificial Intelligence

Interpreting remote sensing imagery enables numerous downstream applications ranging from land-use planning to deforestation monitoring. Robustly classifying this data is challenging due to the Earth's geographic diversity. While many distinct satellite and aerial image classification datasets exist, there is yet to be a benchmark curated that suitably covers this diversity. In this work, we introduce SATellite ImageNet (SATIN), a metadataset curated from 27 existing remotely sensed datasets, and comprehensively evaluate the zero-shot transfer classification capabilities of a broad range of vision-language (VL) models on SATIN. We find SATIN to be a challenging benchmark-the strongest method we evaluate achieves a classification accuracy of 52.0%. We provide a $\href{https://satinbenchmark.github.io}{\text{public leaderboard}}$ to guide and track the progress of VL models in this important domain.


Learning-Based Procedural Content Generation

arXiv.org Artificial Intelligence

Procedural content generation (PCG) has recently become one of the hottest topics in computational intelligence and AI game researches. Among a variety of PCG techniques, search-based approaches overwhelmingly dominate PCG development at present. While SBPCG leads to promising results and successful applications, it poses a number of challenges ranging from representation to evaluation of the content being generated. In this paper, we present an alternative yet generic PCG framework, named learning-based procedure content generation (LBPCG), to provide potential solutions to several challenging problems in existing PCG techniques. By exploring and exploiting information gained in game development and public beta test via data-driven learning, our framework can generate robust content adaptable to end-user or target players on-line with minimal interruption to their experience. Furthermore, we develop enabling techniques to implement the various models required in our framework. For a proof of concept, we have developed a prototype based on the classic open source first-person shooter game, Quake. Simulation results suggest that our framework is promising in generating quality content.