Roberts, John
Auto-Evaluation: A Critical Measure in Driving Improvements in Quality and Safety of AI-Generated Lesson Resources
Clark, Hannah-Beth, Dowland, Margaux, Benton, Laura, Budai, Reka, Keskin, Ibrahim Kaan, Searle, Emma, Gregory, Matthew, Hodierne, Mark, Gayne, William, Roberts, John
As a publicly funded body in the UK, Oak National Academy is in a unique position to innovate within this field as we have a comprehensive curriculum of approximately 13,000 open education resources (OER) for all National Curriculum subjects, designed and quality-assured by expert, human teachers. This has provided the corpus of content needed for building a high-quality AI-powered lesson planning tool, Aila, that is free to use and, therefore, accessible to all teachers across the country. Furthermore, using our evidence-informed curriculum principles, we have codified and exemplified each component of lesson design. To assess the quality of lessons produced by Aila at scale, we have developed an AI-powered auto-evaluation agent,facilitating informed improvements to enhance output quality. Through comparisons between human and auto-evaluations, we have begun to refine this agent further to increase its accuracy, measured by its alignment with an expert human evaluator. In this paper we present this iterative evaluation process through an illustrative case study focused on one quality benchmark - the level of challenge within multiple-choice quizzes. We also explore the contribution that this may make to similar projects and the wider sector.
Network-level Safety Metrics for Overall Traffic Safety Assessment: A Case Study
Chen, Xiwen, Wang, Hao, Razi, Abolfazl, Russo, Brendan, Pacheco, Jason, Roberts, John, Wishart, Jeffrey, Head, Larry
Driving safety analysis has recently witnessed unprecedented results due to advances in computation frameworks, connected vehicle technology, new generation sensors, and artificial intelligence (AI). Particularly, the recent advances performance of deep learning (DL) methods realized higher levels of safety for autonomous vehicles and empowered volume imagery processing for driving safety analysis. An important application of DL methods is extracting driving safety metrics from traffic imagery. However, the majority of current methods use safety metrics for micro-scale analysis of individual crash incidents or near-crash events, which does not provide insightful guidelines for the overall network-level traffic management. On the other hand, large-scale safety assessment efforts mainly emphasize spatial and temporal distributions of crashes, while not always revealing the safety violations that cause crashes. To bridge these two perspectives, we define a new set of network-level safety metrics for the overall safety assessment of traffic flow by processing imagery taken by roadside infrastructure sensors. An integrative analysis of the safety metrics and crash data reveals the insightful temporal and spatial correlation between the representative network-level safety metrics and the crash frequency. The analysis is performed using two video cameras in the state of Arizona along with a 5-year crash report obtained from the Arizona Department of Transportation. The results confirm that network-level safety metrics can be used by the traffic management teams to equip traffic monitoring systems with advanced AI-based risk analysis, and timely traffic flow control decisions.