Robb, David A.
Visual Exploration of Stopword Probabilities in Topic Models
Xue, Shuangjiang, Bras, Pierre Le, Robb, David A., Chantler, Mike J., Padilla, Stefano
Stopword removal is a critical stage in many Machine Learning methods but often receives little consideration, it interferes with the model visualizations and disrupts user confidence. Inappropriately chosen or hastily omitted stopwords not only lead to suboptimal performance but also significantly affect the quality of models, thus reducing the willingness of practitioners and stakeholders to rely on the output visualizations. This paper proposes a novel extraction method that provides a corpus-specific probabilistic estimation of stopword likelihood and an interactive visualization system to support their analysis. We evaluated our approach and interface using real-world data, a commonly used Machine Learning method (Topic Modelling), and a comprehensive qualitative experiment probing user confidence. The results of our work show that our system increases user confidence in the credibility of topic models by (1) returning reasonable probabilities, (2) generating an appropriate and representative extension of common stopword lists, and (3) providing an adjustable threshold for estimating and analyzing stopwords visually. Finally, we discuss insights, recommendations, and best practices to support practitioners while improving the output of Machine Learning methods and topic model visualizations with robust stopword analysis and removal.
Come Closer: The Effects of Robot Personality on Human Proxemics Behaviours
Moujahid, Meriam, Robb, David A., Dondrup, Christian, Hastie, Helen
Social Robots in human environments need to be able to reason about their physical surroundings while interacting with people. Furthermore, human proxemics behaviours around robots can indicate how people perceive the robots and can inform robot personality and interaction design. Here, we introduce Charlie, a situated robot receptionist that can interact with people using verbal and non-verbal communication in a dynamic environment, where users might enter or leave the scene at any time. The robot receptionist is stationary and cannot navigate. Therefore, people have full control over their personal space as they are the ones approaching the robot. We investigated the influence of different apparent robot personalities on the proxemics behaviours of the humans. The results indicate that different types of robot personalities, specifically introversion and extroversion, can influence human proxemics behaviours. Participants maintained shorter distances with the introvert robot receptionist, compared to the extrovert robot. Interestingly, we observed that human-robot proxemics were not the same as typical human-human interpersonal distances, as defined in the literature. We therefore propose new proxemics zones for human-robot interaction.
Feeding the Coffee Habit: A Longitudinal Study of a Robo-Barista
Lim, Mei Yii, Robb, David A., Wilson, Bruce W., Hastie, Helen
Studying Human-Robot Interaction over time can provide insights into what really happens when a robot becomes part of people's everyday lives. "In the Wild" studies inform the design of social robots, such as for the service industry, to enable them to remain engaging and useful beyond the novelty effect and initial adoption. This paper presents an "In the Wild" experiment where we explored the evolution of interaction between users and a Robo-Barista. We show that perceived trust and prior attitudes are both important factors associated with the usefulness, adaptability and likeability of the Robo-Barista. A combination of interaction features and user attributes are used to predict user satisfaction. Qualitative insights illuminated users' Robo-Barista experience and contribute to a number of lessons learned for future long-term studies.
We are all Individuals: The Role of Robot Personality and Human Traits in Trustworthy Interaction
Lim, Mei Yii, Lopes, José David Aguas, Robb, David A., Wilson, Bruce W., Moujahid, Meriam, De Pellegrin, Emanuele, Hastie, Helen
As robots take on roles in our society, it is important that their appearance, behaviour and personality are appropriate for the job they are given and are perceived favourably by the people with whom they interact. Here, we provide an extensive quantitative and qualitative study exploring robot personality but, importantly, with respect to individual human traits. Firstly, we show that we can accurately portray personality in a social robot, in terms of extroversion-introversion using vocal cues and linguistic features. Secondly, through garnering preferences and trust ratings for these different robot personalities, we establish that, for a Robo-Barista, an extrovert robot is preferred and trusted more than an introvert robot, regardless of the subject's own personality. Thirdly, we find that individual attitudes and predispositions towards robots do impact trust in the Robo-Baristas, and are therefore important considerations in addition to robot personality, roles and interaction context when designing any human-robot interaction study.