Rob Brekelmans
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg
Compression is at the heart of effective representation learning. However, lossy compression is typically achieved through simple parametric models like Gaussian noise to preserve analytic tractability, and the limitations this imposes on learning are largely unexplored. Further, the Gaussian prior assumptions in models such as variational autoencoders (VAEs) provide only an upper bound on the compression rate in general. We introduce a new noise channel, Echo noise, that admits a simple, exact expression for mutual information for arbitrary input distributions. The noise is constructed in a data-driven fashion that does not require restrictive distributional assumptions. With its complex encoding mechanism and exact rate regularization, Echo leads to improved bounds on log-likelihood and dominates -VAEs across the achievable range of rate-distortion trade-offs. Further, we show that Echo noise can outperform flow-based methods without the need to train additional distributional transformations.
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg
Compression is at the heart of effective representation learning. However, lossy compression is typically achieved through simple parametric models like Gaussian noise to preserve analytic tractability, and the limitations this imposes on learning are largely unexplored. Further, the Gaussian prior assumptions in models such as variational autoencoders (VAEs) provide only an upper bound on the compression rate in general. We introduce a new noise channel, Echo noise, that admits a simple, exact expression for mutual information for arbitrary input distributions. The noise is constructed in a data-driven fashion that does not require restrictive distributional assumptions. With its complex encoding mechanism and exact rate regularization, Echo leads to improved bounds on log-likelihood and dominates -VAEs across the achievable range of rate-distortion trade-offs. Further, we show that Echo noise can outperform flow-based methods without the need to train additional distributional transformations.
Invariant Representations without Adversarial Training
Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, Greg Ver Steeg
Representations of data that are invariant to changes in specified factors are useful for a wide range of problems: removing potential biases in prediction problems, controlling the effects of covariates, and disentangling meaningful factors of variation. Unfortunately, learning representations that exhibit invariance to arbitrary nuisance factors yet remain useful for other tasks is challenging.