Goto

Collaborating Authors

 Rittinger, Frank


The AIPS-98 Planning Competition

AI Magazine

In 1998, the international planning community was invited to take part in the first planning competition, hosted by the Artificial Intelligence Planning Systems Conference, to provide a new impetus for empirical evaluation and direct comparison of automatic domain-independent planning systems. This article describes the systems that competed in the event, examines the results, and considers some of the implications for the future of the field.


The AIPS-98 Planning Competition

AI Magazine

In 1998, the international planning community was invited to take part in the first planning competition, hosted by the Artificial Intelligence Planning Systems Conference, to provide a new impetus for empirical evaluation and direct comparison of automatic domain-independent planning systems. This article describes the systems that competed in the event, examines the results, and considers some of the implications for the future of the field.


The CS Freiburg Team: Playing Robotic Soccer Based on an Explicit World Model

AI Magazine

Robotic soccer is an ideal task to demonstrate new techniques and explore new problems. Our intention in building a robotic soccer team and participating in RoboCup-98 was, first, to demonstrate the usefulness of the self-localization methods we have developed. Second, we wanted to show that playing soccer based on an explicit world model is much more effective than other methods. Third, we intended to explore the problem of building and maintaining a global team world model.


The CS Freiburg Team: Playing Robotic Soccer Based on an Explicit World Model

AI Magazine

Robotic soccer is an ideal task to demonstrate new techniques and explore new problems. Moreover, problems and solutions can easily be communicated because soccer is a well-known game. Our intention in building a robotic soccer team and participating in RoboCup-98 was, first, to demonstrate the usefulness of the self-localization methods we have developed. Second, we wanted to show that playing soccer based on an explicit world model is much more effective than other methods. Third, we intended to explore the problem of building and maintaining a global team world model. As has been demonstrated by the performance of our team, we were successful with the first two points. Moreover, robotic soccer gave us the opportunity to study problems in distributed, cooperative sensing.