Rimell, Laura
ECLeKTic: a Novel Challenge Set for Evaluation of Cross-Lingual Knowledge Transfer
Goldman, Omer, Shaham, Uri, Malkin, Dan, Eiger, Sivan, Hassidim, Avinatan, Matias, Yossi, Maynez, Joshua, Gilady, Adi Mayrav, Riesa, Jason, Rijhwani, Shruti, Rimell, Laura, Szpektor, Idan, Tsarfaty, Reut, Eyal, Matan
To achieve equitable performance across languages, multilingual large language models (LLMs) must be able to abstract knowledge beyond the language in which it was acquired. However, the current literature lacks reliable ways to measure LLMs' capability of cross-lingual knowledge transfer. To that end, we present ECLeKTic, a multilingual closed-book QA (CBQA) dataset that Evaluates Cross-Lingual Knowledge Transfer in a simple, black-box manner. We detected information with uneven coverage across languages by controlling for presence and absence of Wikipedia articles in 12 languages. We generated knowledge-seeking questions in a source language, for which the answer appears in a relevant Wikipedia article and translated them to all other 11 languages, for which the respective Wikipedias lack equivalent articles. Assuming that Wikipedia reflects the prominent knowledge in the LLM's training data, to solve ECLeKTic's CBQA task the model is required to transfer knowledge between languages. Experimenting with 8 LLMs, we show that SOTA models struggle to effectively share knowledge across, languages even if they can predict the answer well for queries in the same language the knowledge was acquired in.
A Natural Bias for Language Generation Models
Meister, Clara, Stokowiec, Wojciech, Pimentel, Tiago, Yu, Lei, Rimell, Laura, Kuncoro, Adhiguna
After just a few hundred training updates, a standard probabilistic model for language generation has likely not yet learnt many semantic or syntactic rules of natural language, making it difficult to estimate the probability distribution over next tokens. Yet around this point, these models have identified a simple, loss-minimising behaviour: to output the unigram distribution of the target training corpus. The use of such a heuristic raises the question: Can we initialise our models with this behaviour and save precious compute resources and model capacity? Here we show that we can effectively endow standard neural language generation models with a separate module that reflects unigram frequency statistics as prior knowledge, simply by initialising the bias term in a model's final linear layer with the log-unigram distribution. We use neural machine translation as a test bed for this simple technique and observe that it: (i) improves learning efficiency; (ii) achieves better overall performance; and perhaps most importantly (iii) appears to disentangle strong frequency effects by encouraging the model to specialise in non-frequency-related aspects of language.
Ethical and social risks of harm from Language Models
Weidinger, Laura, Mellor, John, Rauh, Maribeth, Griffin, Conor, Uesato, Jonathan, Huang, Po-Sen, Cheng, Myra, Glaese, Mia, Balle, Borja, Kasirzadeh, Atoosa, Kenton, Zac, Brown, Sasha, Hawkins, Will, Stepleton, Tom, Biles, Courtney, Birhane, Abeba, Haas, Julia, Rimell, Laura, Hendricks, Lisa Anne, Isaac, William, Legassick, Sean, Irving, Geoffrey, Gabriel, Iason
This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.
Scaling Language Models: Methods, Analysis & Insights from Training Gopher
Rae, Jack W., Borgeaud, Sebastian, Cai, Trevor, Millican, Katie, Hoffmann, Jordan, Song, Francis, Aslanides, John, Henderson, Sarah, Ring, Roman, Young, Susannah, Rutherford, Eliza, Hennigan, Tom, Menick, Jacob, Cassirer, Albin, Powell, Richard, Driessche, George van den, Hendricks, Lisa Anne, Rauh, Maribeth, Huang, Po-Sen, Glaese, Amelia, Welbl, Johannes, Dathathri, Sumanth, Huang, Saffron, Uesato, Jonathan, Mellor, John, Higgins, Irina, Creswell, Antonia, McAleese, Nat, Wu, Amy, Elsen, Erich, Jayakumar, Siddhant, Buchatskaya, Elena, Budden, David, Sutherland, Esme, Simonyan, Karen, Paganini, Michela, Sifre, Laurent, Martens, Lena, Li, Xiang Lorraine, Kuncoro, Adhiguna, Nematzadeh, Aida, Gribovskaya, Elena, Donato, Domenic, Lazaridou, Angeliki, Mensch, Arthur, Lespiau, Jean-Baptiste, Tsimpoukelli, Maria, Grigorev, Nikolai, Fritz, Doug, Sottiaux, Thibault, Pajarskas, Mantas, Pohlen, Toby, Gong, Zhitao, Toyama, Daniel, d'Autume, Cyprien de Masson, Li, Yujia, Terzi, Tayfun, Mikulik, Vladimir, Babuschkin, Igor, Clark, Aidan, Casas, Diego de Las, Guy, Aurelia, Jones, Chris, Bradbury, James, Johnson, Matthew, Hechtman, Blake, Weidinger, Laura, Gabriel, Iason, Isaac, William, Lockhart, Ed, Osindero, Simon, Rimell, Laura, Dyer, Chris, Vinyals, Oriol, Ayoub, Kareem, Stanway, Jeff, Bennett, Lorrayne, Hassabis, Demis, Kavukcuoglu, Koray, Irving, Geoffrey
Natural language communication is core to intelligence, as it allows ideas to be efficiently shared between humans or artificially intelligent systems. The generality of language allows us to express many intelligence tasks as taking in natural language input and producing natural language output. Autoregressive language modelling -- predicting the future of a text sequence from its past -- provides a simple yet powerful objective that admits formulation of numerous cognitive tasks. At the same time, it opens the door to plentiful training data: the internet, books, articles, code, and other writing. However this training objective is only an approximation to any specific goal or application, since we predict everything in the sequence rather than only the aspects we care about. Yet if we treat the resulting models with appropriate caution, we believe they will be a powerful tool to capture some of the richness of human intelligence. Using language models as an ingredient towards intelligence contrasts with their original application: transferring text over a limited-bandwidth communication channel. Shannon's Mathematical Theory of Communication (Shannon, 1948) linked the statistical modelling of natural language with compression, showing that measuring the cross entropy of a language model is equivalent to measuring its compression rate.
Pretraining the Noisy Channel Model for Task-Oriented Dialogue
Liu, Qi, Yu, Lei, Rimell, Laura, Blunsom, Phil
Direct decoding for task-oriented dialogue is known to suffer from the explaining-away effect, manifested in models that prefer short and generic responses. Here we argue for the use of Bayes' theorem to factorize the dialogue task into two models, the distribution of the context given the response, and the prior for the response itself. This approach, an instantiation of the noisy channel model, both mitigates the explaining-away effect and allows the principled incorporation of large pretrained models for the response prior. We present extensive experiments showing that a noisy channel model decodes better responses compared to direct decoding and that a two stage pretraining strategy, employing both open-domain and task-oriented dialogue data, improves over randomly initialized models.
Probing Emergent Semantics in Predictive Agents via Question Answering
Das, Abhishek, Carnevale, Federico, Merzic, Hamza, Rimell, Laura, Schneider, Rosalia, Abramson, Josh, Hung, Alden, Ahuja, Arun, Clark, Stephen, Wayne, Gregory, Hill, Felix
Recent work has shown how predictive modeling can endow agents with rich knowledge of their surroundings, improving their ability to act in complex environments. We propose question-answering as a general paradigm to decode and understand the representations that such agents develop, applying our method to two recent approaches to predictive modeling -action-conditional CPC (Guo et al., 2018) and SimCore (Gregor et al., 2019). After training agents with these predictive objectives in a visually-rich, 3D environment with an assortment of objects, colors, shapes, and spatial configurations, we probe their internal state representations with synthetic (English) questions, without backpropagating gradients from the question-answering decoder into the agent. The performance of different agents when probed this way reveals that they learn to encode factual, and seemingly compositional, information about objects, properties and spatial relations from their physical environment. Our approach is intuitive, i.e. humans can easily interpret responses of the model as opposed to inspecting continuous vectors, and model-agnostic, i.e. applicable to any modeling approach. By revealing the implicit knowledge of objects, quantities, properties and relations acquired by agents as they learn, question-conditional agent probing can stimulate the design and development of stronger predictive learning objectives.