Ridzuan, Muhammad
Breaking Down the Hierarchy: A New Approach to Leukemia Classification
Hamdi, Ibraheem, El-Gendy, Hosam, Sharshar, Ahmed, Saeed, Mohamed, Ridzuan, Muhammad, Hashmi, Shahrukh K., Syed, Naveed, Mirza, Imran, Hussain, Shakir, Abdalla, Amira Mahmoud, Yaqub, Mohammad
The complexities inherent to leukemia, multifaceted cancer affecting white blood cells, pose considerable diagnostic and treatment challenges, primarily due to reliance on laborious morphological analyses and expert judgment that are susceptible to errors. Addressing these challenges, this study presents a refined, comprehensive strategy leveraging advanced deep-learning techniques for the classification of leukemia subtypes. We commence by developing a hierarchical label taxonomy, paving the way for differentiating between various subtypes of leukemia. The research further introduces a novel hierarchical approach inspired by clinical procedures capable of accurately classifying diverse types of leukemia alongside reactive and healthy cells. An integral part of this study involves a meticulous examination of the performance of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) as classifiers. The proposed method exhibits an impressive success rate, achieving approximately 90\% accuracy across all leukemia subtypes, as substantiated by our experimental results. A visual representation of the experimental findings is provided to enhance the model's explainability and aid in understanding the classification process.
All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Vayani, Ashmal, Dissanayake, Dinura, Watawana, Hasindri, Ahsan, Noor, Sasikumar, Nevasini, Thawakar, Omkar, Ademtew, Henok Biadglign, Hmaiti, Yahya, Kumar, Amandeep, Kuckreja, Kartik, Maslych, Mykola, Ghallabi, Wafa Al, Mihaylov, Mihail, Qin, Chao, Shaker, Abdelrahman M, Zhang, Mike, Ihsani, Mahardika Krisna, Esplana, Amiel, Gokani, Monil, Mirkin, Shachar, Singh, Harsh, Srivastava, Ashay, Hamerlik, Endre, Izzati, Fathinah Asma, Maani, Fadillah Adamsyah, Cavada, Sebastian, Chim, Jenny, Gupta, Rohit, Manjunath, Sanjay, Zhumakhanova, Kamila, Rabevohitra, Feno Heriniaina, Amirudin, Azril, Ridzuan, Muhammad, Kareem, Daniya, More, Ketan, Li, Kunyang, Shakya, Pramesh, Saad, Muhammad, Ghasemaghaei, Amirpouya, Djanibekov, Amirbek, Azizov, Dilshod, Jankovic, Branislava, Bhatia, Naman, Cabrera, Alvaro, Obando-Ceron, Johan, Otieno, Olympiah, Farestam, Fabian, Rabbani, Muztoba, Baliah, Sanoojan, Sanjeev, Santosh, Shtanchaev, Abduragim, Fatima, Maheen, Nguyen, Thao, Kareem, Amrin, Aremu, Toluwani, Xavier, Nathan, Bhatkal, Amit, Toyin, Hawau, Chadha, Aman, Cholakkal, Hisham, Anwer, Rao Muhammad, Felsberg, Michael, Laaksonen, Jorma, Solorio, Thamar, Choudhury, Monojit, Laptev, Ivan, Shah, Mubarak, Khan, Salman, Khan, Fahad
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network
Ridzuan, Muhammad, Saeed, Numan, Maani, Fadillah Adamsyah, Nandakumar, Karthik, Yaqub, Mohammad
Survival analysis plays a crucial role in estimating the likelihood of future events for patients by modeling time-to-event data, particularly in healthcare settings where predictions about outcomes such as death and disease recurrence are essential. However, this analysis poses challenges due to the presence of censored data, where time-to-event information is missing for certain data points. Yet, censored data can offer valuable insights, provided we appropriately incorporate the censoring time during modeling. In this paper, we propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly. Additionally, we introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes. Through empirical evaluation on two real-world cancer datasets, we demonstrate SurvCORN's ability to maintain accurate ordering between patient outcomes while improving individual time-to-event predictions. Our contributions extend recent advancements in ordinal regression to survival analysis, offering valuable insights into accurate prognosis in healthcare settings.
HuLP: Human-in-the-Loop for Prognosis
Ridzuan, Muhammad, Kassem, Mai, Saeed, Numan, Sobirov, Ikboljon, Yaqub, Mohammad
This paper introduces HuLP, a Human-in-the-Loop for Prognosis model designed to enhance the reliability and interpretability of prognostic models in clinical contexts, especially when faced with the complexities of missing covariates and outcomes. HuLP offers an innovative approach that enables human expert intervention, empowering clinicians to interact with and correct models' predictions, thus fostering collaboration between humans and AI models to produce more accurate prognosis. Additionally, HuLP addresses the challenges of missing data by utilizing neural networks and providing a tailored methodology that effectively handles missing data. Traditional methods often struggle to capture the nuanced variations within patient populations, leading to compromised prognostic predictions. HuLP imputes missing covariates based on imaging features, aligning more closely with clinician workflows and enhancing reliability. We conduct our experiments on two real-world, publicly available medical datasets to demonstrate the superiority and competitiveness of HuLP.
SurvRNC: Learning Ordered Representations for Survival Prediction using Rank-N-Contrast
Saeed, Numan, Ridzuan, Muhammad, Maani, Fadillah Adamsyah, Alasmawi, Hussain, Nandakumar, Karthik, Yaqub, Mohammad
Predicting the likelihood of survival is of paramount importance for individuals diagnosed with cancer as it provides invaluable information regarding prognosis at an early stage. This knowledge enables the formulation of effective treatment plans that lead to improved patient outcomes. In the past few years, deep learning models have provided a feasible solution for assessing medical images, electronic health records, and genomic data to estimate cancer risk scores. However, these models often fall short of their potential because they struggle to learn regression-aware feature representations. In this study, we propose Survival Rank-N Contrast (SurvRNC) method, which introduces a loss function as a regularizer to obtain an ordered representation based on the survival times. This function can handle censored data and can be incorporated into any survival model to ensure that the learned representation is ordinal. The model was extensively evaluated on a HEad \& NeCK TumOR (HECKTOR) segmentation and the outcome-prediction task dataset. We demonstrate that using the SurvRNC method for training can achieve higher performance on different deep survival models. Additionally, it outperforms state-of-the-art methods by 3.6% on the concordance index. The code is publicly available on https://github.com/numanai/SurvRNC
MGMT promoter methylation status prediction using MRI scans? An extensive experimental evaluation of deep learning models
Saeed, Numan, Ridzuan, Muhammad, Alasmawi, Hussain, Sobirov, Ikboljon, Yaqub, Mohammad
The number of studies on deep learning for medical diagnosis is expanding, and these systems are often claimed to outperform clinicians. However, only a few systems have shown medical efficacy. From this perspective, we examine a wide range of deep learning algorithms for the assessment of glioblastoma - a common brain tumor in older adults that is lethal. Surgery, chemotherapy, and radiation are the standard treatments for glioblastoma patients. The methylation status of the MGMT promoter, a specific genetic sequence found in the tumor, affects chemotherapy's effectiveness. MGMT promoter methylation improves chemotherapy response and survival in several cancers. MGMT promoter methylation is determined by a tumor tissue biopsy, which is then genetically tested. This lengthy and invasive procedure increases the risk of infection and other complications. Thus, researchers have used deep learning models to examine the tumor from brain MRI scans to determine the MGMT promoter's methylation state. We employ deep learning models and one of the largest public MRI datasets of 585 participants to predict the methylation status of the MGMT promoter in glioblastoma tumors using MRI scans. We test these models using Grad-CAM, occlusion sensitivity, feature visualizations, and training loss landscapes. Our results show no correlation between these two, indicating that external cohort data should be used to verify these models' performance to assure the accuracy and reliability of deep learning systems in cancer diagnosis.
CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Graham, Simon, Vu, Quoc Dang, Jahanifar, Mostafa, Weigert, Martin, Schmidt, Uwe, Zhang, Wenhua, Zhang, Jun, Yang, Sen, Xiang, Jinxi, Wang, Xiyue, Rumberger, Josef Lorenz, Baumann, Elias, Hirsch, Peter, Liu, Lihao, Hong, Chenyang, Aviles-Rivero, Angelica I., Jain, Ayushi, Ahn, Heeyoung, Hong, Yiyu, Azzuni, Hussam, Xu, Min, Yaqub, Mohammad, Blache, Marie-Claire, Piégu, Benoît, Vernay, Bertrand, Scherr, Tim, Böhland, Moritz, Löffler, Katharina, Li, Jiachen, Ying, Weiqin, Wang, Chixin, Kainmueller, Dagmar, Schönlieb, Carola-Bibiane, Liu, Shuolin, Talsania, Dhairya, Meda, Yughender, Mishra, Prakash, Ridzuan, Muhammad, Neumann, Oliver, Schilling, Marcel P., Reischl, Markus, Mikut, Ralf, Huang, Banban, Chien, Hsiang-Chin, Wang, Ching-Ping, Lee, Chia-Yen, Lin, Hong-Kun, Liu, Zaiyi, Pan, Xipeng, Han, Chu, Cheng, Jijun, Dawood, Muhammad, Deshpande, Srijay, Bashir, Raja Muhammad Saad, Shephard, Adam, Costa, Pedro, Nunes, João D., Campilho, Aurélio, Cardoso, Jaime S., S, Hrishikesh P, Puthussery, Densen, G, Devika R, C, Jiji V, Zhang, Ye, Fang, Zijie, Lin, Zhifan, Zhang, Yongbing, Lin, Chunhui, Zhang, Liukun, Mao, Lijian, Wu, Min, Vo, Vi Thi-Tuong, Kim, Soo-Hyung, Lee, Taebum, Kondo, Satoshi, Kasai, Satoshi, Dumbhare, Pranay, Phuse, Vedant, Dubey, Yash, Jamthikar, Ankush, Vuong, Trinh Thi Le, Kwak, Jin Tae, Ziaei, Dorsa, Jung, Hyun, Miao, Tianyi, Snead, David, Raza, Shan E Ahmed, Minhas, Fayyaz, Rajpoot, Nasir M.
Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.
Self-Supervised Learning for Fine-Grained Image Classification
Breiki, Farha Al, Ridzuan, Muhammad, Grandhe, Rushali
Fine-grained image classification involves identifying different subcategories of a class which possess very subtle discriminatory features. Fine-grained datasets usually provide bounding box annotations along with class labels to aid the process of classification. However, building large scale datasets with such annotations is a mammoth task. Moreover, this extensive annotation is time-consuming and often requires expertise, which is a huge bottleneck in building large datasets. On the other hand, self-supervised learning (SSL) exploits the freely available data to generate supervisory signals which act as labels. The features learnt by performing some pretext tasks on huge unlabelled data proves to be very helpful for multiple downstream tasks. Our idea is to leverage self-supervision such that the model learns useful representations of fine-grained image classes. We experimented with 3 kinds of models: Jigsaw solving as pretext task, adversarial learning (SRGAN) and contrastive learning based (SimCLR) model. The learned features are used for downstream tasks such as fine-grained image classification. Our code is available at http://github.com/rush2406/Self-Supervised-Learning-for-Fine-grained-Image-Classification