Riddle, Patricia
PropNEAT -- Efficient GPU-Compatible Backpropagation over NeuroEvolutionary Augmenting Topology Networks
Merry, Michael, Riddle, Patricia, Warren, Jim
We introduce PropNEAT, a fast backpropagation implementation of NEAT that uses a bidirectional mapping of the genome graph to a layer-based architecture that preserves the NEAT genomes whilst enabling efficient GPU backpropagation. We test PropNEAT on 58 binary classification datasets from the Penn Machine Learning Benchmarks database, comparing the performance against logistic regression, dense neural networks and random forests, as well as a densely retrained variant of the final PropNEAT model. PropNEAT had the second best overall performance, behind Random Forest, though the difference between the models was not statistically significant apart from between Random Forest in comparison with logistic regression and the PropNEAT retrain models. PropNEAT was substantially faster than a naive backpropagation method, and both were substantially faster and had better performance than the original NEAT implementation. We demonstrate that the per-epoch training time for PropNEAT scales linearly with network depth, and is efficient on GPU implementations for backpropagation. This implementation could be extended to support reinforcement learning or convolutional networks, and is able to find sparser and smaller networks with potential for applications in low-power contexts.
Towards Knowledgeable Supervised Lifelong Learning Systems
Benavides-Prado, Diana (The University of Auckland) | Koh, Yun Sing | Riddle, Patricia
Learning a sequence of tasks is a long-standing challenge in machine learning. This setting applies to learning systems that observe examples of a range of tasks at different points in time. A learning system should become more knowledgeable as more related tasks are learned. Although the problem of learning sequentially was acknowledged for the first time decades ago, the research in this area has been rather limited. Research in transfer learning, multitask learning, metalearning and deep learning has studied some challenges of these kinds of systems. Recent research in lifelong machine learning and continual learning has revived interest in this problem. We propose Proficiente, a full framework for long-term learning systems. Proficiente relies on knowledge transferred between hypotheses learned with Support Vector Machines. The first component of the framework is focused on transferring forward selectively from a set of existing hypotheses or functions representing knowledge acquired during previous tasks to a new target task. A second component of Proficiente is focused on transferring backward, a novel ability of long-term learning systems that aim to exploit knowledge derived from recent tasks to encourage refinement of existing knowledge. We propose a method that transfers selectively from a task learned recently to existing hypotheses representing previous tasks. The method encourages retention of existing knowledge whilst refining. We analyse the theoretical properties of the proposed framework. Proficiente is accompanied by an agnostic metric that can be used to determine if a long-term learning system is becoming more knowledgeable. We evaluate Proficiente in both synthetic and real-world datasets, and demonstrate scenarios where knowledgeable supervised learning systems can be achieved by means of transfer.
Meta-Search Through the Space of Representations and Heuristics on a Problem by Problem Basis
Fuentetaja, Raquel (Universidad Carlos III de Madrid) | Barley, Michael (University of Auckland) | Borrajo, Daniel (Universidad Carlos III de Madrid) | Douglas, Jordan (University of Auckland) | Franco, Santiago (University of Huddersfield) | Riddle, Patricia (University of Auckland)
Two key aspects of problem solving are representation and search heuristics. Both theoretical and experimental studies have shown that there is no one best problem representation nor one best search heuristic. Therefore, some recent methods, e.g., portfolios, learn a good combination of problem solvers to be used in a given domain or set of domains. There are even dynamic portfolios that select a particular combination of problem solvers specific to a problem. These approaches: (1) need to perform a learning step; (2) do not usually focus on changing the representation of the input domain/problem; and (3) frequently do not adapt the portfolio to the specific problem. This paper describes a meta-reasoning system that searches through the space of combinations of representations and heuristics to find one suitable for optimally solving the specific problem. We show that this approach can be better than selecting a combination to use for all problems within a domain and is competitive with state of the art optimal planners.
Texture Modelling with Nested High-order Markov-Gibbs Random Fields
Versteegen, Ralph, Gimel'farb, Georgy, Riddle, Patricia
Currently, Markov-Gibbs random field (MGRF) image models which include high-order interactions are almost always built by modelling responses of a stack of local linear filters. Actual interaction structure is specified implicitly by the filter coefficients. In contrast, we learn an explicit high-order MGRF structure by considering the learning process in terms of general exponential family distributions nested over base models, so that potentials added later can build on previous ones. We relatively rapidly add new features by skipping over the costly optimisation of parameters. We introduce the use of local binary patterns as features in MGRF texture models, and generalise them by learning offsets to the surrounding pixels. These prove effective as high-order features, and are fast to compute. Several schemes for selecting high-order features by composition or search of a small subclass are compared. Additionally we present a simple modification of the maximum likelihood as a texture modelling-specific objective function which aims to improve generalisation by local windowing of statistics. The proposed method was experimentally evaluated by learning high-order MGRF models for a broad selection of complex textures and then performing texture synthesis, and succeeded on much of the continuum from stochastic through irregularly structured to near-regular textures. Learning interaction structure is very beneficial for textures with large-scale structure, although those with complex irregular structure still provide difficulties. The texture models were also quantitatively evaluated on two tasks and found to be competitive with other works: grading of synthesised textures by a panel of observers; and comparison against several recent MGRF models by evaluation on a constrained inpainting task.