Goto

Collaborating Authors

 Richard, Antoine


Observability Investigation for Rotational Calibration of (Global-pose aided) VIO under Straight Line Motion

arXiv.org Artificial Intelligence

Online extrinsic calibration is crucial for building "power-on-and-go" moving platforms, like robots and AR devices. However, blindly performing online calibration for unobservable parameter may lead to unpredictable results. In the literature, extensive studies have been conducted on the extrinsic calibration between IMU and camera, from theory to practice. It is well-known that the observability of extrinsic parameter can be guaranteed under sufficient motion excitation. Furthermore, the impacts of degenerate motions are also investigated. Despite these successful analyses, we identify an issue regarding the existing observability conclusion. This paper focuses on the observability investigation for straight line motion, which is a common-seen and fundamental degenerate motion in applications. We analytically prove that pure translational straight line motion can lead to the unobservability of the rotational extrinsic parameter between IMU and camera (at least one degree of freedom). By correcting observability conclusion, our novel theoretical finding disseminate more precise principle to the research community and provide explainable calibration guideline for practitioners. Our analysis is validated by rigorous theory and experiments.


Improving Monocular Visual-Inertial Initialization with Structureless Visual-Inertial Bundle Adjustment

arXiv.org Artificial Intelligence

Monocular visual inertial odometry (VIO) has facilitated a wide range of real-time motion tracking applications, thanks to the small size of the sensor suite and low power consumption. To successfully bootstrap VIO algorithms, the initialization module is extremely important. Most initialization methods rely on the reconstruction of 3D visual point clouds. These methods suffer from high computational cost as state vector contains both motion states and 3D feature points. To address this issue, some researchers recently proposed a structureless initialization method, which can solve the initial state without recovering 3D structure. However, this method potentially compromises performance due to the decoupled estimation of rotation and translation, as well as linear constraints. To improve its accuracy, we propose novel structureless visual-inertial bundle adjustment to further refine previous structureless solution. Extensive experiments on real-world datasets show our method significantly improves the VIO initialization accuracy, while maintaining real-time performance.


A Deep Reinforcement Learning Framework and Methodology for Reducing the Sim-to-Real Gap in ASV Navigation

arXiv.org Artificial Intelligence

Despite the increasing adoption of Deep Reinforcement Learning (DRL) for Autonomous Surface Vehicles (ASVs), there still remain challenges limiting real-world deployment. In this paper, we first integrate buoyancy and hydrodynamics models into a modern Reinforcement Learning framework to reduce training time. Next, we show how system identification coupled with domain randomization improves the RL agent performance and narrows the sim-to-real gap. Real-world experiments for the task of capturing floating waste show that our approach lowers energy consumption by 13.1\% while reducing task completion time by 7.4\%. These findings, supported by sharing our open-source implementation, hold the potential to impact the efficiency and versatility of ASVs, contributing to environmental conservation efforts.


Performance Comparison of ROS2 Middlewares for Multi-robot Mesh Networks in Planetary Exploration

arXiv.org Artificial Intelligence

Recent advancements in Multi-Robot Systems (MRS) and mesh network technologies pave the way for innovative approaches to explore extreme environments. The Artemis Accords, a series of international agreements, have further catalyzed this progress by fostering cooperation in space exploration, emphasizing the use of cutting-edge technologies. In parallel, the widespread adoption of the Robot Operating System 2 (ROS 2) by companies across various sectors underscores its robustness and versatility. This paper evaluates the performances of available ROS 2 MiddleWare (RMW), such as FastRTPS, CycloneDDS and Zenoh, over a mesh network with a dynamic topology. The final choice of RMW is determined by the one that would fit the most the scenario: an exploration of the extreme extra-terrestrial environment using a MRS. The conducted study in a real environment highlights Zenoh as a potential solution for future applications, showing a reduced delay, reachability, and CPU usage while being competitive on data overhead and RAM usage over a dynamic mesh topology


Object-centric Reconstruction and Tracking of Dynamic Unknown Objects using 3D Gaussian Splatting

arXiv.org Artificial Intelligence

Generalizable perception is one of the pillars of high-level autonomy in space robotics. Estimating the structure and motion of unknown objects in dynamic environments is fundamental for such autonomous systems. Traditionally, the solutions have relied on prior knowledge of target objects, multiple disparate representations, or low-fidelity outputs unsuitable for robotic operations. This work proposes a novel approach to incrementally reconstruct and track a dynamic unknown object using a unified representation -- a set of 3D Gaussian blobs that describe its geometry and appearance. The differentiable 3D Gaussian Splatting framework is adapted to a dynamic object-centric setting. The input to the pipeline is a sequential set of RGB-D images. 3D reconstruction and 6-DoF pose tracking tasks are tackled using first-order gradient-based optimization. The formulation is simple, requires no pre-training, assumes no prior knowledge of the object or its motion, and is suitable for online applications. The proposed approach is validated on a dataset of 10 unknown spacecraft of diverse geometry and texture under arbitrary relative motion. The experiments demonstrate successful 3D reconstruction and accurate 6-DoF tracking of the target object in proximity operations over a short to medium duration. The causes of tracking drift are discussed and potential solutions are outlined.


Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor

arXiv.org Artificial Intelligence

In robotics, motion capture systems have been widely used to measure the accuracy of localization algorithms. Moreover, this infrastructure can also be used for other computer vision tasks, such as the evaluation of Visual (-Inertial) SLAM dynamic initialization, multi-object tracking, or automatic annotation. Yet, to work optimally, these functionalities require having accurate and reliable spatial-temporal calibration parameters between the camera and the global pose sensor. In this study, we provide two novel solutions to estimate these calibration parameters. Firstly, we design an offline target-based method with high accuracy and consistency. Spatial-temporal parameters, camera intrinsic, and trajectory are optimized simultaneously. Then, we propose an online target-less method, eliminating the need for a calibration target and enabling the estimation of time-varying spatial-temporal parameters. Additionally, we perform detailed observability analysis for the target-less method. Our theoretical findings regarding observability are validated by simulation experiments and provide explainable guidelines for calibration. Finally, the accuracy and consistency of two proposed methods are evaluated with hand-held real-world datasets where traditional hand-eye calibration method do not work.


GraspLDM: Generative 6-DoF Grasp Synthesis using Latent Diffusion Models

arXiv.org Artificial Intelligence

Vision-based grasping of unknown objects in unstructured environments is a key challenge for autonomous robotic manipulation. A practical grasp synthesis system is required to generate a diverse set of 6-DoF grasps from which a task-relevant grasp can be executed. Although generative models are suitable for learning such complex data distributions, existing models have limitations in grasp quality, long training times, and a lack of flexibility for task-specific generation. In this work, we present GraspLDM- a modular generative framework for 6-DoF grasp synthesis that uses diffusion models as priors in the latent space of a VAE. GraspLDM learns a generative model of object-centric $SE(3)$ grasp poses conditioned on point clouds. GraspLDM's architecture enables us to train task-specific models efficiently by only re-training a small de-noising network in the low-dimensional latent space, as opposed to existing models that need expensive re-training. Our framework provides robust and scalable models on both full and single-view point clouds. GraspLDM models trained with simulation data transfer well to the real world and provide an 80\% success rate for 80 grasp attempts of diverse test objects, improving over existing generative models. We make our implementation available at https://github.com/kuldeepbrd1/graspldm .


RANS: Highly-Parallelised Simulator for Reinforcement Learning based Autonomous Navigating Spacecrafts

arXiv.org Artificial Intelligence

Nowadays, realistic simulation environments are essential to validate and build reliable robotic solutions. This is particularly true when using Reinforcement Learning (RL) based control policies. To this end, both robotics and RL developers need tools and workflows to create physically accurate simulations and synthetic datasets. Gazebo, MuJoCo, Webots, Pybullets or Isaac Sym are some of the many tools available to simulate robotic systems. Developing learning-based methods for space navigation is, due to the highly complex nature of the problem, an intensive data-driven process that requires highly parallelized simulations. When it comes to the control of spacecrafts, there is no easy to use simulation library designed for RL. We address this gap by harnessing the capabilities of NVIDIA Isaac Gym, where both physics simulation and the policy training reside on GPU. Building on this tool, we provide an open-source library enabling users to simulate thousands of parallel spacecrafts, that learn a set of maneuvering tasks, such as position, attitude, and velocity control. These tasks enable to validate complex space scenarios, such as trajectory optimization for landing, docking, rendezvous and more.


DRIFT: Deep Reinforcement Learning for Intelligent Floating Platforms Trajectories

arXiv.org Artificial Intelligence

This investigation introduces a novel deep reinforcement learning-based suite to control floating platforms in both simulated and real-world environments. Floating platforms serve as versatile test-beds to emulate microgravity environments on Earth. Our approach addresses the system and environmental uncertainties in controlling such platforms by training policies capable of precise maneuvers amid dynamic and unpredictable conditions. Leveraging state-of-the-art deep reinforcement learning techniques, our suite achieves robustness, adaptability, and good transferability from simulation to reality. Our Deep Reinforcement Learning (DRL) framework provides advantages such as fast training times, large-scale testing capabilities, rich visualization options, and ROS bindings for integration with real-world robotic systems. Beyond policy development, our suite provides a comprehensive platform for researchers, offering open-access at https://github.com/elharirymatteo/RANS/tree/ICRA24.


Improving GPS-VIO Fusion with Adaptive Rotational Calibration

arXiv.org Artificial Intelligence

Accurate global localization is crucial for autonomous navigation and planning. To this end, GPS-aided Visual-Inertial Odometry (GPS-VIO) fusion algorithms are proposed in the literature. This paper presents a novel GPS-VIO system that is able to significantly benefit from the online adaptive calibration of the rotational extrinsic parameter between the GPS reference frame and the VIO reference frame. The behind reason is this parameter is observable. This paper provides novel proof through nonlinear observability analysis. We also evaluate the proposed algorithm extensively on diverse platforms, including flying UAV and driving vehicle. The experimental results support the observability analysis and show increased localization accuracy in comparison to state-of-the-art (SOTA) tightly-coupled algorithms.